The Derivative

\[y = f(x) \]

Secant line with slope \(\frac{f(x) - f(a)}{x - a} \)

\[\Delta f = f(x) - f(a) \]

Tangent line with slope \(f'(a) \)

\[\Delta x = \text{run} \]

Note that the slope of the secant line is

\[\text{slope} = \frac{\text{rise}}{\text{run}} = \frac{f(x) - f(a)}{x - a} \]

We can obtain slope of tangent line by letting \(\Delta x \) get 'small' (i.e. \(x \to a \)) which leads to the following:

Defn. Let \(f \) be a function on \((b,c)\). The derivative of \(f \) at the point \(a \in (b,c) \) is

\[f'(a) = \lim_{x \to a} \frac{f(x) - f(a)}{x - a} \]

provided this limit exists and is finite.

Notes:

1) If \(f'(a) \) exists and is finite, we say \(f \) is differentiable at \(a \). Otherwise, \(f \) is not differentiable at \(a \).
2) \(f'(a) \) is the slope of the tangent line through point \((a,f(a))\).
3) \(\lim_{x \to a} \frac{f(x) - f(a)}{x - a} \approx \frac{\Delta f}{\Delta x} \) can be thought of as `infinitesimal division' (i.e. division of two `small' numbers).
4) Other `disguises' include: \(f'(a) = \lim_{h \to 0} \frac{f(a+h) - f(a)}{h} = \lim_{h \to 0} \frac{f(a+h) - f(a-h)}{2h} \)

Thm 28.2

If \(f \) is differentiable at \(a \), then \(f \) is continuous at \(a \).

Moral: The set of differentiable functions is a subset of continuous functions.
Thm (28.3)

Let \(f \) and \(g \) be differentiable functions at \(x = a \). Then the functions \(cf \) (with \(c \) a constant), \(f + g \), \(fg \), and \(\frac{f}{g} \) are differentiable at \(x = a \) when defined.

The derivatives are:

1) \((cf)'(a) = c \cdot f'(a)\) \quad \text{(Constant Multiple Rule)}
2) \((f + g)'(a) = f'(a) + g'(a)\) \quad \text{(Sum Rule)}
3) \((fg)'(a) = f(a)g'(a) + f'(a)g(a)\) \quad \text{(Product Rule)}
4) \(\left(\frac{f}{g}\right)'(a) = \frac{f(a)g'(a) - f'(a)g(a)}{g(a)^2}\) \quad \text{(Quotient Rule)}

Note: Clearly the quotient rule only makes sense if \(g(a) \neq 0 \).

Chain Rule (28.4)

If \(f \) is differentiable at \(a \) and \(g \) is differentiable at \(f(a) \), then \((g \circ f)'(a)\) is differentiable at \(a \). Moreover,
\[(g \circ f)'(a) = g'(f(a)) \cdot f'(a). \]

Derivative Rules for Well-Known Functions

 e) \((x^n)' = nx^{n-1}\) for \(n \in \mathbb{R} \) \quad \text{(Power Rule)}
 f) \((c)' = 0\) for \(c \in \mathbb{R} \)
 g) \((\sin x)' = \cos x\)
 h) \((\cos x)' = -\sin x\)
 i) \((b^x)' = b^x \ln b\) for \(b \in \mathbb{R} \)
 j) \((\log_b x)' = \frac{1}{x \ln b}\) for \(b \in \mathbb{R} \)
 k) \((\tan x)' = \sec^2 x\)
 l) \((\sec x)' = \sec x \tan x\)

Note: You may use these facts on a test unless specifically asked to prove it using the definition of the derivative.