Defn. Let \(\{a_n\} \) be a sequence and \(x \) a variable. Then \(\sum_{n=0}^{\infty} a_n x^n = a_0 + a_1 x + a_2 x^2 + a_3 x^3 + \ldots \) is called a **power series**.

Note: One can replace \(x \) with \((x-a) \) to obtain the power series centered at \(x=\alpha \).

Thm. (23.1)
For the power series \(\sum_{n=0}^{\infty} a_n x^n \), let
\[
\beta = \lim_{n \to \infty} \sup_n \left| a_n \right|^{1/n} \quad \text{and} \quad R = \frac{1}{\beta}
\]
Then
a) the power series converges for \(|x| < R \).
b) the power series diverges for \(|x| > R \).

Notes:
1) If \(\beta = 0 \), we set \(R = \infty \). If \(\beta = \infty \), we set \(R = 0 \).
2) \(R \) is called the **radius of convergence**.
3) Most times it's easier to compute \(\lim_{n \to \infty} \left| \frac{a_{n+1}}{a_n} \right| \) (i.e. ratio test). Corollary 12.3 tells us \(\beta = \lim_{n \to \infty} \left| \frac{a_{n+1}}{a_n} \right| \).
4) There are exactly 3 scenarios for a power series:
 a) it converges \(\forall x \in \mathbb{R} \) (i.e. \(R = \infty \))
 b) it converges for only \(x=0 \) (i.e. \(R = 0 \))
 c) it converges for \(x \) in a bounded interval centered at \(0 \) (i.e. \(R \) is finite). This interval may be open, half-open, or closed, and it is called the **interval of convergence**.