Defn f is uniformly continuous on $S \subseteq \mathbb{R}$ if

1) $\forall \delta > 0$, $\exists \varepsilon > 0$ such that $\forall x, y \in S$ with $|x - y| < \delta \implies |f(x) - f(y)| < \varepsilon$. It is called uniformly continuous if it's uniformly continuous on its domain.

-Notes: 1) Unlike continuity, uniform continuity cannot be defined at a point, only on a set.
2) Uniform continuity on S implies continuity on S, which is easily shown by letting $y = x_0$ and comparing to ε-δ-property.
3) The negation of (1) is $\exists \delta > 0, \forall \varepsilon > 0, \exists x, y \in S$ with $|x - y| < \delta$ and $|f(x) - f(y)| \geq \varepsilon$.

Thm (19.2)
If f is continuous on $[a, b]$, then f is uniformly continuous on $[a, b]$.

-Notes: 1) With the continuity theorems (17.3-17.5) and list of known continuous \mathbb{R}ns, we can show most functions are uniformly continuous on any $[a, b]$ with this theorem.
2) The interval $[a, b]$ can be replaced with any closed and bounded set S, and the theorem still holds.

Moral: On closed and bounded sets, continuity and uniform continuity are equivalent.

Thm (19.4)
If f is uniformly continuous on S and $\{s_n\}$ is a Cauchy sequence in S, then $\{f(s_n)\}$ is a Cauchy sequence.
- Note: This theorem gives us a way to prove/disprove uniform continuity using sequences and is the closest analog to the 'sequential form of continuity'.
- Moral: Uniform continuity preserves Cauchy sequences.

Defn The function \(\tilde{f} \) is an extension of a function \(f \) if \(\text{domain}(f) \subseteq \text{domain}(\tilde{f}) \) and \(f(x) = \tilde{f}(x) \quad \forall x \in \text{domain}(f) \).

Thm (19.5)

A function \(f \) is uniformly continuous on \((a, b) \) if and only if \(f \) can be extended to a continuous function \(\tilde{f} \) on \([a, b] \).

- Note: Very useful theorem for showing:
 a) Continuous functions with removable singularities (a.k.a. 'holes') are uniformly continuous once 'filled-in' correctly. (i.e. \(f(x) = \frac{\sin(x)}{x} \))
 b) Continuous functions with an undefined limits through oscillation are not uniformly continuous. (i.e. \(f(x) = \sin(\frac{1}{x}) \)).

Thm (19.6)

Let \(f \) be continuous on interval \(I \), and let \(I^0 \) be all points in \(I \) without the endpoints. If \(f \) is differentiable on \(I^0 \) along with \(f' \) bounded on \(I^0 \), then \(f \) is uniformly continuous on \(I \).

- Note: \(I^0 \) is sometimes referred to as the interior of \(I \) and is an open set (i.e. \(I = [a, b] \Rightarrow I^0 = (a, b) \)).
- Moral: A continuous function with bounded slope on its interior is uniformly continuous.