Defn A sequence of functions $\{f_n\}$ converges pointwise to a function f, written $\{f_n\} \rightarrow f$, on $S \subseteq \mathbb{R}$ if
\[
\lim_{n \to \infty} f_n(x) = f(x) \quad \forall x \in S.
\]

Defn A sequence of functions $\{f_n\}$ converges uniformly to a function f, written $\{f_n\} \Rightarrow f$, on $S \subseteq \mathbb{R}$ if
\[
\forall \varepsilon > 0, \exists N \text{ such that } \forall x \in S, \forall n > N \Rightarrow |f_n(x) - f(x)| < \varepsilon
\]

Notes: 1) Uniform convergence is stronger than pointwise convergence (i.e. $\{f_n\} \Rightarrow f \Rightarrow \{f_n\} \rightarrow f$).
2) If $\{f_n\} \Rightarrow g_1$ and $\{f_n\} \rightarrow g_2 \Rightarrow g_1(x) = g_2(x)$ (i.e. the pointwise and uniform limits are unique). Hence, when trying to find the uniform limit one finds the pointwise limit as a candidate.

Thm (24.3)
Let $\{f_n\}$ be a sequence of functions defined on $S \subseteq \mathbb{R}$ where $\{f_n\} \Rightarrow f$ on S. If f_n is continuous at x_0 for all n, then f is continuous at x_0.

Note: This gives us a quick way of determining whether the limit of continuous functions is uniform by checking whether the limit function is continuous, assuming we can find the limit function.

Moral: The uniform limit of continuous functions is continuous.

Prop (24.4)
$\{f_n\} \Rightarrow f$ on $S \subseteq \mathbb{R}$ if and only if $\lim_{n \to \infty} [\sup \{f(x) - f_n(x) : x \in S\}] = 0$.

Note: Another useful way of determining uniform convergence.

Moral: A sequence of functions converging uniformly is equivalent to the biggest difference between a sequence element and the limit function tends to zero.
Defn
A sequence of functions \(\{f_n\} \) defined on \(S \subseteq \mathbb{R} \) is uniformly Cauchy if
\[
\forall \varepsilon > 0, \exists N \text{ such that } \forall x \in S, \forall m,n > N \implies |f_n(x) - f_m(x)| < \varepsilon
\]

-Notes: 1) A useful concept because it allows us to show uniform convergence without knowing the limit function.
2) It's easy to show uniform convergence \(\implies \) uniform Cauchy.

Thm (25.4)
Let \(\{f_n\} \) be a sequence of functions that are uniformly Cauchy on \(S \subseteq \mathbb{R} \). Then there exists a function \(f \) such that \(\{f_n\} \to f \) on \(S \).

Defn
Let \(\{g_k\} \) be a sequence of functions. The resulting series \(\sum_{k=0}^{\infty} g_k(x) \) is called a series of functions, which makes sense if the sequence of partial sums \(f_n(x) := \sum_{k=0}^{n} g_k(x) \) converges or diverges to \(\pm \infty \) pointwise. If there exists an \(f \) such that \(\{f_n\} \to f \) on \(S \subseteq \mathbb{R} \), then we say the series is uniformly convergent on \(S \).

-Note: If \(g_k \) is continuous for all \(k \) and \(\sum g_k \) is uniformly convergent on \(S \), then \(f(x) := \sum g_k(x) \) is continuous on \(S \) by Thm 24.3.

Defn
The series of functions \(\sum g_k \) satisfies the Cauchy criterion if
\[
\forall \varepsilon > 0, \exists N \text{ such that } \forall x \in S, \forall n,m > N \implies |\sum_{k=m}^{n} g_k(x)| < \varepsilon.
\]

-Notes: 1) This is equivalent to the seq. of partial sums being uniformly Cauchy.
2) The series satisfies the Cauchy criterion if it's uniformly convergent.

Weierstrass M-Test
Consider sequence \(\{M_k\} \subseteq \mathbb{R}_{>0} \) with \(\sum M_k < \infty \).
If \(|g_k(x)| \leq M_k \ \forall x \in S \subseteq \mathbb{R} \), then \(\sum g_k \) converges uniformly on \(S \).