18.2) It would breakdown because the limit of subsequences \(x_0 \) and \(y_0 \) does not have to be in the interval \((a, b)\). Since we would only assume continuity of \(f \) on \((a, b)\), we would lose it at the endpoints \(a \) and \(b \). This could cause the function to be unbounded and not contain it’s minimum and/or maximum. For example, take \(f(x) = \frac{1}{x} \) on \((0, 1)\).

18.4) Suppose \(S \subseteq \mathbb{R} \) and there exists a sequence \(\{x_n\} \) in \(S \) that converges to \(x_0 \notin S \). Consider the function \(f(x) = \frac{1}{x - x_0} \) on \(S \). \(f \) is continuous on \(S \) since \(x_0 \notin S \) by the fact \(x - x_0 \) is a polynomial and the division law of continuity (Theorem 17.4). \(f \) is unbounded because of the division by zero that occurs within the sequence \(f(x_n) \) (Theorem 9.10 and Exercise 9.10b in the case the sequence is negative).

18.6) We can rewrite the equation \(x = \cos x \) as \(x - \cos x = 0 \). Let \(f(x) = x - \cos x \) and \(m = 0 \). Notice that \(f(0) = -1 < 0 \) and \(f\left(\frac{\pi}{2}\right) = \frac{\pi}{2} > 0 \). Choose interval \((0, \frac{\pi}{2})\), so that \(f(0) \leq m = 0 < f\left(\frac{\pi}{2}\right) \). By the Intermediate Value Theorem, there exists at least one \(x \in (0, \frac{\pi}{2}) \) with \(f(x) = m = 0 \). With this \(x \), we have

\[
 f(x) = 0 \iff x - \cos x = 0 \iff x = \cos x.
\]

Hence, \(x = \cos x \) for \(x \in (0, \frac{\pi}{2}) \).

18.8) Suppose \(f \) is a continuous function on \(\mathbb{R} \) and \(f(a)f(b) < 0 \) for some \(a, b \in \mathbb{R} \). Since \(f(a)f(b) < 0 \), one of the two values \(f(a) \) or \(f(b) \) must be positive while the other is negative. Without loss of generality, assume \(f(a) < 0 \) and \(f(b) > 0 \). Let \(m = 0 \) and choose interval \((a, b)\) since \(f(a) < m = 0 < f(b) \). By the Intermediate Value Theorem, there exists at least one \(x \in (a, b) \) with \(f(x) = m = 0 \), proving the claim.

18.10) Suppose \(f \) is continuous on \([0, 2]\) and \(f(0) = f(2) \). Define \(g(x) = f(x + 1) - f(x) \) on \([0, 1]\). Notice \(g(0) = f(2) - f(1) \) and \(g(1) = f(1) - f(0) = f(1) - f(2) \) by assumption. So we have \(g(0) = -g(1) \). We consider two cases: a) \(g(0) = 0 \) or b) \(g(0) \neq 0 \).

Case a) If \(g(0) = 0 \), this implies \(f(2) - f(1) = 0 \) and consequently \(f(2) = f(1) \). So for \(x = 2 \) and \(y = 1 \), we have \(|x - y| = 1\) and \(f(x) = f(y) \), proving the claim.

Case b) If \(g(0) \neq 0 \), without loss of generality we can assume \(g(0) < 0 \), which implies \(g(1) > 0 \). \(g \) is continuous since \(f \) is continuous and composition and differences preserve continuity. Let \(m = 0 \), and choose interval \((0, 1)\) since \(g(0) < m = 0 < g(1) \). By the Intermediate Value Theorem, there exists at least one \(c \in (0, 1) \) with \(g(c) = m = 0 \). With this \(c \), we have

\[
 g(c) = 0 \iff f(c + 1) - f(c) \iff f(c + 1) = f(c).
\]

So for \(x = c + 1 \) and \(y = c \), we have \(|x - y| = 1\) and \(f(x) = f(y) \), proving the claim.