Ex. Use intercepts & vertical/horizontal asymptotes to sketch the graph of \(y = \frac{2-x}{x^2-1} \)

Intercepts
- **y-int:** \(x=0 \Rightarrow y = \frac{2}{-1} = -2 \), \(y=-2 \)
- **x-int:** \(y=0 \Rightarrow 0 = \frac{2-x}{x^2-1} \Rightarrow x=2 \)

H.A.'s (Look at behaviour as \(x \to \pm \infty \))
\[
\lim_{x \to \pm \infty} \frac{2-x}{x^2-1} = \lim_{x \to \pm \infty} \frac{\frac{2}{x^2} - \frac{1}{x^2}}{1 - \frac{1}{x^2}} = 0
\]
So. **H.A. at \(y=0 \)**

V.A.'s (Look for division by \(\phi \). Candidates are \(x=\pm 1 \))
\[
\lim_{x \to 1^-} \frac{2-x}{x^2-1} = \frac{1}{0^-} = -\infty
\]
V.A. at \(x=1 \)
\[
\lim_{x \to 1^+} \frac{2-x}{x^2-1} = \frac{1}{0^+} = +\infty
\]
\[
\lim_{x \to -1^-} \frac{2-x}{x^2-1} = \frac{1}{0^+} = +\infty
\]
V.A. at \(x=-1 \)
\[
\lim_{x \to -1^+} \frac{2-x}{x^2-1} = \frac{1}{0^-} = -\infty
\]

With all this info, we can now sketch.