Math 16A

Vogler

Definition A function \(y = f(x) \) is **continuous at** \(x = a \) if

1. \(f(a) \) exists (finite #)
2. \(\lim_{{x \to a}} f(x) \) exists (finite #) \(\Leftrightarrow \) \(\lim_{{x \to a^-}} f(x) = \lim_{{x \to a^+}} f(x) \)
3. \(\lim_{{x \to a}} f(x) = f(a) \)

Note: This definition is equivalent to not lifting your pen/pencil when drawing the function's graph.

Fact: Sums, differences, products, quotients (denominator \(\neq 0 \)), and compositions of continuous functions are continuous.

Fact: The following list of functions are continuous:

1. polynomials for all \(x \)-values
2. Roots \(\sqrt[n]{\cdots} \) when defined
3. \(\sin x \) and \(\cos x \) for all \(x \)-values

Example Let \(f(x) = \frac{x^3 - 5x + 6}{2x^2 + x - 3} \); since \(y = x^3 - 5x + 6 \) (polynomial) and \(y = 2x^2 + x - 3 \) (polynomial) are continuous for all \(x \), it follows \(f(x) = \frac{x^3 - 5x + 6}{2x^2 + x - 3} \) (quotient) is continuous for all \(x \) except when \(y = 2x^2 + x - 3 = (2x+3)(x-1) = 0 \), that is, except at \(x = 1 \) and \(x = \frac{-3}{2} \).

Example: Let \(f(x) = (3 + \sin x)^{50} \); since \(g(x) = 3 + \sin x \) (well-known) and \(h(x) = x^{50} \) (polynomial) are continuous for all \(x \), it follows their composition \(f(x) = h(g(x)) = (3 + \sin x)^{50} \) is continuous for all \(x \).