Math 16A
Vogler
The Differential

- Let \(\Delta x \) be the change (error) in \(x \)

\& assume \(x \) changes from \(a \) to \(a + \Delta x \).

\(x : a \to a + \Delta x \)

- Define the exact change in \(f \) as

\[\Delta f = \Delta y = f(a + \Delta x) - f(a) \]

- Note: slope of line \(L = \frac{\text{rise}}{\text{run}} \Rightarrow f'(a) = \frac{df}{\Delta x} \Rightarrow df = f'(a) \Delta x \)

- Define the differential (approximate change) of \(f \) as

\[df = f'(a) \Delta x \]

- Fact: If \(\Delta x \) is 'small', then

\[df \approx \Delta f \]

With this fact & the differential, we can approximate or simply functions by the following eqn for a line

\[f(a + \Delta x) \approx f(a) + df = f(a) + f'(a) \Delta x \]

Note: To use this equation effectively, you must choose 'a' such that \(f(a) \& f'(a) \) can be easily determined.
Examples using differentials

Example 1: Use differentials to estimate \(\sqrt[3]{26.5} \).

Let \(f(x) = \sqrt[3]{x} \) and \(a = 27 \) \((b/c \ 27 \approx 26.5 \) and \(\sqrt[3]{27} \) is computable \() \).

\(x: 27 \rightarrow 26.5 \Rightarrow \Delta x = \frac{1}{2} \); \(f'(x) = \frac{1}{3(\sqrt[3]{x})^2} \)

\(\Delta y = f(26.5) - f(27) = \sqrt[3]{26.5} - \sqrt[3]{27} = \sqrt[3]{26.5} - 3 \)

\(dy = f'(27) \cdot \Delta x = \frac{1}{3(\sqrt[3]{27})^2} \cdot (-\frac{1}{2}) = -\frac{1}{54} \)

\(\Delta y \approx dy \Rightarrow \sqrt[3]{26.5} - 3 \approx -\frac{1}{54} \)

\(\Rightarrow \sqrt[3]{26.5} \approx 3 - \frac{1}{54} = 2 \frac{53}{54} \)

Example 2: If the radius of a circle is measured w/ an absolute percentage error of at most 3%, use differentials to estimate the maximum absolute percentage error in computing the circle’s

a) circumference \quad b) area

Solution: Assume that \(\frac{|\Delta r|}{r} \leq 3\%

a) \(C = 2\pi r \Rightarrow C' = 2\pi \), find \(\frac{|\Delta C|}{C} \):

\(\frac{|\Delta C|}{C} \approx \frac{|dC|}{C} = \frac{1C' \Delta r}{C} = \frac{2\pi \Delta r}{2\pi r} = \frac{|\Delta r|}{r} \leq 3\% \)

b) \(A = \pi r^2 \Rightarrow A' = 2\pi r \), find \(\frac{|\Delta A|}{A} \):

\(\frac{|\Delta A|}{A} \approx \frac{|dA|}{A} = \frac{1A' \Delta r}{A} = \frac{2\pi r \Delta r}{\pi r^2} = 2 \frac{|\Delta r|}{r} \leq 2(3\%) = 6\% \)