Math 16A

Pre-Calculus Review

Absolute Value

Defn: The absolute value of a real # \(z \) is

\[
|z| = \begin{cases}
 z & \text{if } z \geq 0 \\
 -z & \text{if } z < 0
\end{cases}
\]

Rule: \(\sqrt{z^2} = |z| \)

Lines

Defn: The slope of the line passing through points \((x_1, y_1) \) & \((x_2, y_2) \) is

\[
m = \frac{y_2 - y_1}{x_2 - x_1} = \frac{\Delta y}{\Delta x} = \text{"rise" \over \"run"}
\]

Slope-Intercept Form: \(y = mx + b \) is line with slope \(m \) & \(y \)-intercept \(b \).

Point-Slope Form \(y - y_1 = m(x - x_1) \) is line with slope \(m \) & passing through point \((x_1, y_1) \).

Parallel Lines

Same slopes

\(m_1 = m_2 \)

Perpendicular Lines

Slopes are negative reciprocals

\(m_1 m_2 = -1 \)

or

\(m_1 = -\frac{1}{m_2} \)

Some Basic Facts about Numbers

Let \(A \) and \(B \) be numbers

1) If \(A \cdot B = 0 \) \(\Rightarrow \) \(A = 0 \) or \(B = 0 \)
2) If \(\frac{A}{B} = 0 \) \(\Rightarrow \) \(A = 0 \) and \(B \neq 0 \)
Triangles

Similar Triangles

All angles match

\[\frac{a}{b} = \frac{c}{d} \]

Pythagorean Theorem

\[a^2 + b^2 = c^2 \] if and only if the triangle is right

Defn The distance between two points \((x_1, y_1)\) & \((x_2, y_2)\) in the xy-plane

\[L = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2} \]

Defn The midpoint of the line segment joining points \((x_1, y_1)\) & \((x_2, y_2)\) is

\[mp = \left(\frac{x_1 + x_2}{2}, \frac{y_1 + y_2}{2} \right) \]

Circles

Defn The circle w/ center \((h, k)\) & radius \(r\) is given by

\[(x - h)^2 + (y - k)^2 = r^2 \]

Note: This equation follows immediately from the distance formula since \(r = \sqrt{(x-h)^2 + (y-k)^2} \)