
Solution Figure 15.6 displays the volume beneath the surface. By Fubini’s Theorem,

Reversing the order of integration gives the same answer:

EXAMPLE 2 Find the volume of the region bounded above by the ellipitical paraboloid
and below by the rectangle .

Solution The surface and volume are shown in Figure 15.7. The volume is given by the
double integral

 = L
1

0
 (20 + 2x2 + 8) dx = c20x + 2

3x3 + 8x d
0

1

= 86
3 .

 = L
1

0
 C10y + x2y + y3 D y = 0

y = 2
 dx

V = 6
R

 s10 + x2 + 3y2d dA = L
1

0
 L

2

0
s10 + x2 + 3y2d dy dx 

R: 0 … x … 1, 0 … y … 2z = 10 + x2 + 3y2

 = L
2

0
200 dx = 400.

 = L
2

0
[s100 - 3x2d - s -100 - 3x2d] dx

 L
2

0
 L

1

-1
s100 - 6x2yd dy dx = L

2

0
 C100y - 3x2y2 D y = -1

y = 1  dx

 = L
1

-1
s200 - 16yd dy = C200y - 8y2 D-1

1 = 400.

 6
R

 ƒsx, yd dA = L
1

-1
 L

2

0
s100 - 6x2yd dx dy = L

1

-1
 C100x - 2x3y D x = 0

x = 2  dy
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Exercises 15.1

Evaluating Iterated Integrals
In Exercises 1–12, evaluate the iterated integral.

1. 2.

3. 4.

5. 6.

7. 8.

9. 10. L
1

0
 L

2

1
 xyex dy dxL

ln 2

0
 L

ln 5

1
 e2x + y dy dx

L
4

1
 L

4

0
 ax

2
+ 2yb  dx dyL

1

0
 L

1

0
 

y
1 + xy

 dx dy

L
3

0
 L

0

-2
 (x2y - 2xy) dy dxL

3

0
 L

2

0
 (4 - y2) dy dx

L
1

0
 L

1

0
 a1 -

x2 + y2

2
b  dx dyL

0

-1
 L

1

-1
 (x + y + 1) dx dy

L
2

0
 L

1

-1
 (x - y) dy dxL

2

1
 L

4

0
 2xy dy dx

11. 12.

Evaluating Double Integrals over Rectangles
In Exercises 13–20, evaluate the double integral over the given 
region R.

13.

14.

15. 6
R

 xy cos y dA,  R: -1 … x … 1, 0 … y … p

6
R

 a2x
y2 b  dA,  R: 0 … x … 4, 1 … y … 2

6
R

 s6y2 - 2xd dA,  R:  0 … x … 1, 0 … y … 2

L
2p

p
 L
p

0
 (sin x + cos y) dx dyL

2

-1
 L
p/2

0
 y sin x dx dy

FIGURE 15.6 The double integral
gives the volume under this

surface over the rectangular region R
(Example 1).

4R ƒ(x, y) dA

1R
2

1

50

z

x

–1

z 5 100 2 6x2y

y

100

FIGURE 15.7 The double integral
gives the volume under this

surface over the rectangular region R
(Example 2).

4R ƒ(x, y) dA

y

x

z

R
2

10

1

z 5 10 1 x2 1 3y2
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15.2 Double Integrals over General Regions

In this section we define and evaluate double integrals over bounded regions in the plane
which are more general than rectangles. These double integrals are also evaluated as iterated
integrals, with the main practical problem being that of determining the limits of integration.
Since the region of integration may have boundaries other than line segments parallel to the
coordinate axes, the limits of integration often involve variables, not just constants.

Double Integrals over Bounded, Nonrectangular Regions

To define the double integral of a function ƒ(x, y) over a bounded, nonrectangular region
R, such as the one in Figure 15.8, we again begin by covering R with a grid of small rec-
tangular cells whose union contains all points of R. This time, however, we cannot exactly
fill R with a finite number of rectangles lying inside R, since its boundary is curved, and
some of the small rectangles in the grid lie partly outside R. A partition of R is formed by
taking the rectangles that lie completely inside it, not using any that are either partly or
completely outside. For commonly arising regions, more and more of R is included as the
norm of a partition (the largest width or height of any rectangle used) approaches zero.

Once we have a partition of R, we number the rectangles in some order from 1 to n
and let be the area of the kth rectangle. We then choose a point in the kth rec-
tangle and form the Riemann sum

As the norm of the partition forming goes to zero, the width and height of
each enclosed rectangle goes to zero and their number goes to infinity. If ƒ(x, y) is a con-
tinuous function, then these Riemann sums converge to a limiting value, not dependent on
any of the choices we made. This limit is called the double integral of ƒ(x, y) over R:

lim
ƒ ƒP ƒ ƒ :0

 an
k = 1

 ƒsxk, ykd ¢Ak = 6
R

 ƒsx, yd dA.

7P 7 : 0,Sn

Sn = an
k = 1

 ƒsxk, ykd ¢Ak.

sxk, ykd¢Ak
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16.

17.

18.

19.

20.

In Exercises 21 and 22, integrate ƒ over the given region.

21. Square over the square 

22. Rectangle over the rectangle 
0 … y … 1

0 … x … p,ƒ(x, y) = y cos xy

1 … x … 2, 1 … y … 2ƒ(x, y) = 1>(xy)

6
R

 
y

x2y2 + 1
 dA,  R: 0 … x … 1, 0 … y … 1

6
R

 
xy3

x2 + 1
 dA,  R: 0 … x … 1, 0 … y … 2

6
R

 xyexy2
 dA,  R: 0 … x … 2, 0 … y … 1

6
R

 ex - y dA,  R:  0 … x … ln 2, 0 … y … ln 2

6
R

 y sin (x + y) dA,  R: -p … x … 0, 0 … y … p
Volume Beneath a Surface 
23. Find the volume of the region bounded above by the paraboloid

and below by the square ,
.

24. Find the volume of the region bounded above by the ellipitical
paraboloid and below by the square

, .

25. Find the volume of the region bounded above by the plane
and below by the square ,

.

26. Find the volume of the region bounded above by the plane
and below by the rectangle , .

27. Find the volume of the region bounded above by the surface
and below by the rectangle ,

28. Find the volume of the region bounded above by the surface
and below by the rectangle ,

0 … y … 2.
R: 0 … x … 1z = 4 - y2

0 … y … p>4.
R: 0 … x … p>2z = 2 sin x cos y

0 … y … 2R: 0 … x … 4z = y>2
0 … y … 1

R: 0 … x … 1z = 2 - x - y

0 … y … 2R: 0 … x … 2
z = 16 - x2 - y2

-1 … y … 1
R: -1 … x … 1z = x2 + y2

z = ƒ(x, y)

R

!xk

!yk

!Ak

(xk, yk)

FIGURE 15.8 A rectangular grid
partitioning a bounded nonrectangular
region into rectangular cells.
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The idea behind these properties is that integrals behave like sums. If the function 
ƒ(x, y) is replaced by its constant multiple cƒ(x, y), then a Riemann sum for ƒ

is replaced by a Riemann sum for cƒ

Taking limits as shows that and 
are equal. It follows that the constant multiple property carries over from sums to double 
integrals.

The other properties are also easy to verify for Riemann sums, and carry over to
double integrals for the same reason. While this discussion gives the idea, an actual
proof that these properties hold requires a more careful analysis of how Riemann sums
converge.

EXAMPLE 4 Find the volume of the wedgelike solid that lies beneath the surface 
and above the region R bounded by the curve , the line

, and the x-axis.

Solution Figure 15.18a shows the surface and the “wedgelike” solid whose volume we
want to calculate. Figure 15.18b shows the region of integration in the xy-plane. If we inte-
grate in the order dy dx (first with respect to y and then with respect to x), two integrations
will be required because y varies from to for and then
varies from to for So we choose to integrate in the
order dx dy, which requires only one double integral whose limits of integration are indi-
cated in Figure 15.18b. The volume is then calculated as the iterated integral:

= 20803
1680 L 12.4.= c191y

24 +
63y2

32 -
145y3

96 -
49y4

768 +
y5

20 +
y7

1344 d20
= L

2

0
 c4( y + 2) -

( y + 2)3

3 # 64 -
( y + 2)y2

4 - 4y2 +
y6

3 # 64 +
y4

4 d  dy

= L
2

0
 c16x - x3

3 - xy2 d x = ( y + 2)>4
x = y2>4  dx

= L
2

0
 L

( y + 2)>4
y2>4  (16 - x2 - y2) dx dy

6
R

 (16 - x2 - y2) dA

0.5 … x … 1.y = 21xy = 4x - 2
0 … x … 0.5,y = 21xy = 0

y = 4x - 2
y = 22x16 - x2 - y2

z =

limn:q cSn = 4R cƒ dAc limn:q Sn = c4R ƒ dAn : q

an
k = 1

 cƒsxk, ykd ¢Ak = can
k = 1

 ƒsxk, ykd ¢Ak = cSn .

Sn = an
k = 1

 ƒsxk, ykd ¢Ak
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FIGURE 15.18 (a) The solid “wedgelike”
region whose volume is found in Example 4.
(b) The region of integration R showing
the order dx dy.

16

1

2 y

x

z

y 5 4x 2 2

z 5 16 2 x2 2 y2

y 5 2! x

(a)

(b)

0 10.5

(1, 2)2

x

y
y 5 4x 2 2

y 5 2!x

R

x 5 4
y2

x 5 4
y 1 2

Exercises 15.2

Sketching Regions of Integration
In Exercises 1–8, sketch the described regions of integration.
1.

2.

3.

4. 0 … y … 1, y … x … 2y

-2 … y … 2, y2 … x … 4

-1 … x … 2, x - 1 … y … x2

0 … x … 3, 0 … y … 2x

5.

6.

7.

8. 0 … y … 8, 1
4

 y … x … y1>3
0 … y … 1, 0 … x … sin-1 y

1 … x … e2, 0 … y … ln x

0 … x … 1, ex … y … e
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866 Chapter 15: Multiple Integrals

Finding Limits of Integration
In Exercises 9–18, write an iterated integral for over the de-
scribed region R using (a) vertical cross-sections, (b) horizontal cross-
sections.

9. 10.

11. 12.

13. Bounded by and 

14. Bounded by and 

15. Bounded by and 

16. Bounded by and 

17. Bounded by and 

18. Bounded by and 

Finding Regions of Integration and Double Integrals
In Exercises 19–24, sketch the region of integration and evaluate the 
integral.

19. 20.

21. 22.

23. 24.

In Exercises 25–28, integrate ƒ over the given region.

25. Quadrilateral over the region in the first quad-
rant bounded by the lines 

26. Triangle over the triangular region with ver-
tices (0, 0), (1, 0), and (0, 1)

27. Triangle over the triangular region cut
from the first quadrant of the u -plane by the line 

28. Curved region over the region in the first
quadrant of the st-plane that lies above the curve from

to 

Each of Exercises 29–32 gives an integral over a region in a Cartesian
coordinate plane. Sketch the region and evaluate the integral.

t = 2t = 1
s = ln t

ƒss, td = es ln t

u + y = 1y
ƒsu, yd = y - 2u

ƒsx, yd = x2 + y2

y = x, y = 2x, x = 1, and x = 2
ƒsx, yd = x>y

L
4

1
 L
2x

0
 
3
2

 ey>2x dy dxL
1

0
 L

y2

0
3y3exy dx dy

L
2

1
 L

y2

y
 dx dyL

ln 8

1
 L

ln y

0
 ex + y dx dy

L
p

0
 L

sin x

0
 y dy dxL

p

0
 L

x

0
 x sin y dy dx

y = x + 2y = x2

x = 0y = 3 - 2x, y = x,

y = ln xy = 0, x = 0, y = 1,

x = ln 3y = e-x, y = 1,

y = 1y = tan x, x = 0,

x = 9y = 1x, y = 0,

x

y

y 5 1

x 5 2

y 5 ex

x

y

y 5 x2

y 5 3x

x

y

y 5 2x

x 5 3

x

y
y 5 x3

y 5 8

4R dA 29.

30.

31.

32.

Reversing the Order of Integration
In Exercises 33–46, sketch the region of integration and write an
equivalent double integral with the order of integration reversed.

33. 34.

35. 36.

37. 38.

39. 40.

41. 42.

43. 44.

45. 46.

In Exercises 47–56, sketch the region of integration, reverse the order
of integration, and evaluate the integral.

47. 48.

49. 50.

51. 52.

53.

54.

55. Square region where R is the region
bounded by the square 

56. Triangular region where R is the region bounded by
the lines and 

Volume Beneath a Surface 
57. Find the volume of the region bounded above by the paraboloid

and below by the triangle enclosed by the lines
and in the xy-plane.

58. Find the volume of the solid that is bounded above by the cylinder
and below by the region enclosed by the parabola

and the line in the xy-plane.y = xy = 2 - x2
z = x2

x + y = 2y = x, x = 0,
z = x2 + y2

z = ƒ(x, y)

x + y = 2y = x, y = 2x,
4R xy dA

ƒ x ƒ + ƒ y ƒ = 1
4R s y - 2x2d dA

L
8

0
 L

223 x
 

dy dx

y4 + 1

L
1>16

0
 L

1>2
y1>4  cos s16px5d dx dy

L
3

0
 L

12x>3  ey3
 dy dxL

22ln 3

0
 L
2ln 3

y>2  e x2
 dx dy

L
2

0
 L

4 - x2

0
 

xe 2y

4 - y
 dy dxL

1

0
 L

1

y
 x 2e xy dx dy

L
2

0
 L

2

x
2y2 sin xy dy dxL

p

0
 L
p

x
 
sin y

y  dy dx

L
13

0
 L

tan-1 y

0
 2xy dx dyL

3

0
 L

ey

1
 (x + y) dx dy

L
p>6

0
 L

1>2
sin x

 xy2 dy dxL
e

1
 L

ln x

0
 xy dy dx

L
2

0
 L
24 - x2

-24 - x2
 6x dy dxL

1

0
 L
21 - y2

-21 - y2
 3y dx dy

L
2

0
 L

4 - y2

0
 y dx dyL

3>2
0

 L
9 - 4x2

0
16x dy dx

L
ln 2

0
 L

2

ey
 dx dyL

1

0
 L

ex

1
 dy dx

L
1

0
 L

1 - x2

1 - x
 dy dxL

1

0
 L
2y

y
 dx dy

L
2

0
 L

0

y - 2
 dx dyL

1

0
 L

4 - 2x

2
 dy dx

L
3>2

0
 L

4 - 2u

1
 
4 - 2u
y2  dy du sthe uy-planed

L
p>3

-p>3  L
sec t

0
3 cos t du dt sthe tu-planed

L
1

0
 L
21 - s2

0
8t dt ds sthe st-planed

L
0

-2
 L

-y

y
2 dp dy sthe py-planed
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59. Find the volume of the solid whose base is the region in the xy-
plane that is bounded by the parabola and the line

while the top of the solid is bounded by the plane

60. Find the volume of the solid in the first octant bounded by the 
coordinate planes, the cylinder and the plane

61. Find the volume of the solid in the first octant bounded by the 
coordinate planes, the plane and the parabolic cylinder

62. Find the volume of the solid cut from the first octant by the 
surface 

63. Find the volume of the wedge cut from the first octant by the
cylinder and the plane 

64. Find the volume of the solid cut from the square column
by the planes and 

65. Find the volume of the solid that is bounded on the front and back
by the planes and on the sides by the cylinders

and above and below by the planes and

66. Find the volume of the solid bounded on the front and back by the
planes on the sides by the cylinders 
above by the cylinder and below by the xy-plane.

In Exercises 67 and 68, sketch the region of integration and the solid
whose volume is given by the double integral.

67.

68.

Integrals over Unbounded Regions
Improper double integrals can often be computed similarly to im-
proper integrals of one variable. The first iteration of the following
improper integrals is conducted just as if they were proper integrals.
One then evaluates an improper integral of a single variable by taking
appropriate limits, as in Section 8.7. Evaluate the improper integrals
in Exercises 69–72 as iterated integrals.

69.

70.

71.

72.

Approximating Integrals with Finite Sums
In Exercises 73 and 74, approximate the double integral of ƒ(x, y) over
the region R partitioned by the given vertical lines and horizon-
tal lines In each subrectangle, use as indicated for your
approximation.

6
R

 ƒsx, yd dA L an
k = 1

 ƒsxk, ykd ¢Ak

sxk, ykdy = c.
x = a

L
q

0
 L

q

0
 xe-sx + 2yd dx dy

L
q

-q
  L

q

-q
 

1
sx2 + 1ds y2 + 1d

 dx dy

L
1

-1
  L

1>21 - x2

-1>21 - x2
 s2y + 1ddy dx

L
q

1
 L

1

e-x
  

1
x3y

 dy dx

L
4

0
 L
216 - y 2

-216 - y 2
 225 - x2 - y2 dx dy

L
3

0
 L

2 - 2x>3
0

 a1 - 1
3

 x - 1
2

 yb  dy dx

z = 1 + y2,
y = ;sec x,x = ;p>3,

z = 0.
z = x + 1y = ;1>x,

x = 1,x = 2

3x + z = 3.z = 0ƒ x ƒ + ƒ y ƒ … 1

x + y = 2.z = 12 - 3y2

z = 4 - x2 - y.

z = 4 - y2.
x = 3,

z + y = 3.
x2 + y2 = 4,

z = x + 4.
y = 3x,

y = 4 - x2
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73. over the region R bounded above by the semicir-
cle and below by the x-axis, using the partition

0, 1 4, 1 2, 1 and 1 2, 1 with the
lower left corner in the kth subrectangle (provided the subrectangle
lies within R)

74. over the region R inside the circle
using the partition 3 2, 2, 5 2,

3 and 5 2, 3, 7 2, 4 with the center (centroid) in
the kth subrectangle (provided the subrectangle lies within R)

Theory and Examples
75. Circular sector Integrate over the smaller

sector cut from the disk by the rays and

76. Unbounded region Integrate 
over the infinite rectangle 

77. Noncircular cylinder A solid right (noncircular) cylinder has
its base R in the xy-plane and is bounded above by the paraboloid

The cylinder’s volume is

Sketch the base region R and express the cylinder’s volume as a
single iterated integral with the order of integration reversed.
Then evaluate the integral to find the volume.

78. Converting to a double integral Evaluate the integral

(Hint: Write the integrand as an integral.)

79. Maximizing a double integral What region R in the xy-plane
maximizes the value of

Give reasons for your answer.

80. Minimizing a double integral What region R in the xy-plane
minimizes the value of

Give reasons for your answer.

81. Is it possible to evaluate the integral of a continuous function 
ƒ(x, y) over a rectangular region in the xy-plane and get different
answers depending on the order of integration? Give reasons for
your answer.

82 How would you evaluate the double integral of a continuous func-
tion ƒ(x, y) over the region R in the xy-plane enclosed by the trian-
gle with vertices (0, 1), (2, 0), and (1, 2)? Give reasons for your
answer.

83. Unbounded region Prove that

 = 4 aLq

0
 e-x2

 dxb2

.

 L
q

-q
 L

q

-q
 e-x 2 - y2

 dx dy = lim
b: q 

 L
b

-b
  L

b

-b
 e-x2 - y2

 dx dy

6
R

sx2 + y2 - 9d dA?

6
R

s4 - x2 - 2y2d dA?

L
2

0
stan-1px - tan-1 xd dx.

V = L
1

0
 L

y

0
sx2 + y2d dx dy + L

2

1
 L

2 - y

0
sx2 + y2d dx dy.

z = x2 + y2.

2 … x 6 q , 0 … y … 2.
ƒsx, yd = 1>[sx2 - xds y - 1d2>3]u = p>2.

u = p>6x2 + y2 … 4
ƒsx, yd = 24 - x2

sxk, ykd>>y = 2,
>>x = 1,sx - 2d2 + s y - 3d2 = 1

ƒsx, yd = x + 2y

sxk, ykd>y = 0,>>x = -1, -1>2 ,
y = 11 - x 2

ƒsx, yd = x + y
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84. Improper double integral Evaluate the improper integral

COMPUTER EXPLORATIONS
Use a CAS double-integral evaluator to estimate the values of the inte-
grals in Exercises 85–88.

85. 86.

87. 88. L
1

-1
  L
21 - x2

0
321 - x2 - y2 dy dxL

1

0
 L

1

0
 tan-1 xy dy dx

L
1

0
 L

1

0
 e-sx2 + y2d dy dxL

3

1
 L

x

1
 
1
xy dy dx

L
1

0
 L

3

0
 

x2

s y - 1d2>3 dy dx.
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Use a CAS double-integral evaluator to find the integrals in Exercises
89–94. Then reverse the order of integration and evaluate, again with a
CAS.

89. 90.

91. 92.

93. 94. L
2

1
 L

8

y3
 

12x2 + y2
 dx dyL

2

1
 L

x2

0
 

1
x + y dy dx

L
2

0
 L

4 - y2

0
 e xy dx dyL

2

0
 L

422y

y3
 sx2y - xy2d dx dy

L
3

0
 L

9

x2
 x cos sy 2d dy dxL

1

0
 L

4

2y
 e x2

 dx dy

15.3 Area by Double Integration

In this section we show how to use double integrals to calculate the areas of bounded re-
gions in the plane, and to find the average value of a function of two variables.

Areas of Bounded Regions in the Plane

If we take in the definition of the double integral over a region R in the pre-
ceding section, the Riemann sums reduce to

(1)

This is simply the sum of the areas of the small rectangles in the partition of R, and ap-
proximates what we would like to call the area of R. As the norm of a partition of R ap-
proaches zero, the height and width of all rectangles in the partition approach zero, and the
coverage of R becomes increasingly complete (Figure 15.8). We define the area of R to be
the limit

. (2)lim
ƒ ƒP ƒ ƒ :0

 an
k = 1

 ¢Ak = 6
R

 dA

Sn = an
k = 1

 ƒsxk, ykd ¢Ak = an
k = 1

 ¢Ak .

ƒsx, yd = 1

DEFINITION The area of a closed, bounded plane region R is

A = 6
R

 dA.

As with the other definitions in this chapter, the definition here applies to a greater
variety of regions than does the earlier single-variable definition of area, but it agrees with
the earlier definition on regions to which they both apply. To evaluate the integral in the
definition of area, we integrate the constant function over R.

EXAMPLE 1 Find the area of the region R bounded by and in the first
quadrant.

y = x2y = x

ƒsx, yd = 1
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EXAMPLE 3 Find the average value of over the rectangle

Solution The value of the integral of ƒ over R is

The area of R is The average value of ƒ over R is 2>p.p.

 = L
p

0
ssin x - 0d dx = -cos x d

0

p

= 1 + 1 = 2.

 L
p

0
 L

1

0
 x cos xy dy dx = L

p

0
csin xy d

y = 0

y = 1

 dx

0 … y … 1.R: 0 … x … p,
ƒsx, yd = x cos xy
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Exercises 15.3

Area by Double Integrals
In Exercises 1–12, sketch the region bounded by the given lines and
curves. Then express the region’s area as an iterated double integral
and evaluate the integral.

1. The coordinate axes and the line 

2. The lines and 

3. The parabola and the line 

4. The parabola and the line 

5. The curve and the lines and 

6. The curves and and the line in the first
quadrant

7. The parabolas and 

8. The parabolas and 

9. The lines and 

10. The lines and and the curve 

11. The lines and 

12. The lines and and the curve 

Identifying the Region of Integration
The integrals and sums of integrals in Exercises 13–18 give the areas
of regions in the xy-plane. Sketch each region, label each bounding
curve with its equation, and give the coordinates of the points where
the curves intersect. Then find the area of the region.

13. 14.

15. 16.

17.

18. L
2

0
 L

0

x2 - 4
 dy dx + L

4

0
 L
2x

0
 dy dx

L
0

-1
 L

1 - x

-2x
 dy dx + L

2

0
 L

1 - x

-x>2  dy dx

L
2

-1
 L

y + 2

y2
 dx dyL

p>4
0

 L
cos x

sin x
 dy dx

L
3

0
 L

xs2 - xd

-x
 dy dxL

6

0
 L

2y

y2>3 dx dy

y = 1xy = -xy = x - 2

y = 3 - xy = 2x, y = x>2,

y = exy = 2y = 1 - x

y = 2y = x, y = x>3,

x = 2y2 - 2x = y2 - 1

x = 2y - y2x = y2

x = e,y = 2 ln xy = ln x

x = ln 2y = 0, x = 0,y = ex

y = -xx = y - y2

y = x + 2x = -y2

y = 4x = 0, y = 2x,

x + y = 2

Finding Average Values
19. Find the average value of over

a. the rectangle .

b. the rectangle .

20. Which do you think will be larger, the average value of
over the square or the aver-

age value of ƒ over the quarter circle in the first
quadrant? Calculate them to find out.

21. Find the average height of the paraboloid over the
square 

22. Find the average value of over the square

Theory and Examples
23. Bacterium population If 

represents the “population density” of a certain bacterium on the
xy-plane, where x and y are measured in centimeters, find the to-
tal population of bacteria within the rectangle and

24. Regional population If represents the
population density of a planar region on Earth, where x and y are
measured in miles, find the number of people in the region
bounded by the curves and 

25. Average temperature in Texas According to the Texas 
Almanac, Texas has 254 counties and a National Weather Ser-
vice station in each county. Assume that at time each of the
254 weather stations recorded the local temperature. Find a for-
mula that would give a reasonable approximation of the average
temperature in Texas at time Your answer should involve in-
formation that you would expect to be readily available in the
Texas Almanac.

26. If is a nonnegative continuous function over the closed
interval , show that the double integral definition of
area for the closed plane region bounded by the graph of ƒ, the
vertical lines and , and the x-axis agrees with the
definition for area beneath the curve in Section 5.3.

x = bx = a

a … x … b
y = ƒ(x)

t0.

t0,

x = 2y - y2.x = y2

ƒsx, yd = 100 sy + 1d
-2 … y … 0.

-5 … x … 5

ƒsx, yd = s10,000e yd>s1 + ƒ x ƒ>2d

ln 2 … x … 2 ln 2, ln 2 … y … 2 ln 2.
ƒsx, yd = 1>sxyd

0 … x … 2, 0 … y … 2.
z = x2 + y2

x2 + y2 … 1
0 … x … 1, 0 … y … 1,ƒsx, yd = xy

0 … x … p, 0 … y … p>20 … x … p, 0 … y … p
ƒsx, yd = sin sx + yd

L  x cos xy dy = sin xy + C
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EXAMPLE 6 Using polar integration, find the area of the region R in the xy-plane en-
closed by the circle above the line and below the line 

Solution A sketch of the region R is shown in Figure 15.28. First we note that the line
has slope so . Next we observe that the line inter-

sects the circle when or . Moreover, the radial line
from the origin through the point has slope giving its angle of in-
clination as . This information is shown in Figure 15.28.

Now, for the region R, as varies from to , the polar coordinate r varies from
the horizontal line to the circle . Substituting for y in the equa-
tion for the horizontal line, we have or which is the polar equation
of the line. The polar equation for the circle is So in polar coordinates, for

varies from to It follows that the iterated integral for
the area then gives

= 1
2 a4p3 + 113

b - 1
2 a4p6 + 13b = p - 13

3 .

= 1
2 C4u + cot uDp>3p>6

= L
p>3
p>6  12 C4 - csc2 uD  du

= L
p>3
p>6  c12 r2 d r = 2

r = csc u
 du

6
R

 dA = L
p>3
p>6 L

2

csc u
 r dr du

r = 2.r = csc up>6 … u … p>3, r
r = 2.

r = csc u,r sin u = 1,
r sin ux2 + y2 = 4y = 1

p>3p>6u
u = p>6 1>13 = tan u,(13, 1)

x = 13x2 + 1 = 4,x2 + y2 = 4
y = 1u = p>313 = tan u,y = 13x

y = 13x.y = 1,x2 + y2 + 4,

= 17
4  L

2p

0
 du = 17p

2 .

= L
2p

0
c92 r2 - 1

4 r4 d r = 1

r = 0
 du

= L
2p

0 L
1

0
 s9r - r3d dr du

6
R

 s9 - x2 - y2d dA = L
2p

0 L
1

0
 s9 - r2d r dr du

15.4 Double Integrals in Polar Form 875

FIGURE 15.28 The region R in 
Example 6.

x

y

y 5 1, or
r 5 csc u

2

2

1

0 1

y 5 !3x

x2 1 y2 5 4

(1, !3)

(!3, 1)

p
6

p
3

R

Exercises 15.4

Regions in Polar Coordinates
In Exercises 1–8, describe the given region in polar coordinates.

1. 2.

x

y

40

1

4

x

y

90

9

3. 4.

x

y

10

!3

x

y

1–1 0

1
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876 Chapter 15: Multiple Integrals

5. 6.

7. The region enclosed by the circle 

8. The region enclosed by the semicircle 

Evaluating Polar Integrals
In Exercises 9–22, change the Cartesian integral into an equivalent 
polar integral. Then evaluate the polar integral.

9. 10.

11. 12.

13. 14.

15. 16.

17.

18.

19.

20.

21.

22.

In Exercises 23–26, sketch the region of integration and convert each
polar integral or sum of integrals to a Cartesian integral or sum of in-
tegrals. Do not evaluate the integrals.

23.

24.

25.

26. L
4 csc u

0
 r7 dr du+ L

p>2
tan-1 43L

3 sec u

0
 r7 dr duL

tan-1 43

0

L
p>4

0
 L

2 sec u

0
 r5 sin2 u dr du

L
p>2
p>6  L

csc u

1
 r2 cos u dr du

L
p>2

0
 L

1

0
 r3 sin u cos u dr du

L
2

1
  L
22x - x2

0
  

1
(x2 + y2)2 dy dx

L
1

0
  L
22 - x2

x
  sx + 2yd dy dx

L
1

-1
  L
21 - y2

-21 - y2
 ln sx2 + y2 + 1d dx dy

L
ln 2

0
 L
2sln 2d2 - y2

0
 e2x2 + y2

 dx dy

L
1

-1
  L
21 - x 2

-21 - x 2
 

2
s1 + x2 + y2d2 dy dx

L
0

-1 
  L

0

-21 - x2
 

2

1 + 2x 2 + y2
 dy dx

L
222

 L
y24 - y 2

  dx dyL
23

1
 L

x

1
  dy dx

L
2

0
 L

x

0
 y dy dxL

6

0
 L

y

0
 x dx dy

L
a

-a
  L
2a2 - x2

-2a2 - x2
 dy dxL

2

0
 L
24 - y2

0
sx2 + y2d dx dy

L
1

0
 L
21 - y2

0
sx2 + y2d dx dyL

1

-1
  L
21 - x2

0
dy dx

x2 + y2 = 2y, y Ú 0.

x2 + y2 = 2x.

x

y

0 1 2

2

2

x

y

10

1

2

2!3

Area in Polar Coordinates
27. Find the area of the region cut from the first quadrant by the curve

28. Cardioid overlapping a circle Find the area of the region that
lies inside the cardioid and outside the circle 

29. One leaf of a rose Find the area enclosed by one leaf of the rose

30. Snail shell Find the area of the region enclosed by the positive
x-axis and spiral The region looks like a
snail shell.

31. Cardioid in the first quadrant Find the area of the region cut
from the first quadrant by the cardioid 

32. Overlapping cardioids Find the area of the region common to
the interiors of the cardioids and 

Average values
In polar coordinates, the average value of a function over a region R
(Section 15.3) is given by

33. Average height of a hemisphere Find the average height of

the hemispherical surface above the disk
in the xy-plane.

34. Average height of a cone Find the average height of the (single)

cone above the disk in the xy-plane.

35. Average distance from interior of disk to center Find the
average distance from a point P(x, y) in the disk to
the origin.

36. Average distance squared from a point in a disk to a point in
its boundary Find the average value of the square of the dis-
tance from the point P(x, y) in the disk to the
boundary point A(1, 0).

Theory and Examples
37. Converting to a polar integral Integrate 

over the region 

38. Converting to a polar integral Integrate 
over the region 

39. Volume of noncircular right cylinder The region that lies in-
side the cardioid and outside the circle is
the base of a solid right cylinder. The top of the cylinder lies in the
plane Find the cylinder’s volume.

40. Volume of noncircular right cylinder The region enclosed by
the lemniscate is the base of a solid right cylinder

whose top is bounded by the sphere Find the
cylinder’s volume.

41. Converting to polar integrals

a. The usual way to evaluate the improper integral
is first to calculate its square:

Evaluate the last integral using polar coordinates and solve
the resulting equation for I.

I 2 = aLq

0
 e-x2

 dxb aLq

0
 e-y2

 dyb = L
q

0
 L

q

0
 e-sx2 + y2d dx dy.

I = 1q
0  e-x2

 dx

z = 22 - r2.

r2 = 2 cos 2u

z = x.

r = 1r = 1 + cos u

1 … x2 + y2 … e2.[ln sx2 + y2d]>sx2 + y2d
ƒsx, yd =

1 … x2 + y2 … e.[ln sx2 + y2d]>2x2 + y2

ƒsx, yd =

x2 + y2 … 1

x2 + y2 … a2

x2 + y2 … a2z = 2x2 + y2

x2 + y2 … a2
z = 2a2 - x2 - y2

1
Area(R)

 6
R

ƒ(r, u) r dr du.

r = 1 - cos u.r = 1 + cos u

r = 1 + sin u.

r = 4u>3, 0 … u … 2p.

r = 12 cos 3u.

r = 1.r = 1 + cos u

r = 2s2 - sin 2ud1>2.
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b. Evaluate

42. Converting to a polar integral Evaluate the integral

43. Existence Integrate the function 
over the disk Does the integral of ƒ(x, y) over
the disk exist? Give reasons for your answer.

44. Area formula in polar coordinates Use the double integral in
polar coordinates to derive the formula

for the area of the fan-shaped region between the origin and polar
curve 

45. Average distance to a given point inside a disk Let be a
point inside a circle of radius a and let h denote the distance from

to the center of the circle. Let d denote the distance from an 
arbitrary point P to Find the average value of over the re-
gion enclosed by the circle. (Hint: Simplify your work by placing
the center of the circle at the origin and on the x-axis.)P0

d2P0.
P0

P0

r = ƒsud, a … u … b.

A = L
b

a
 
1
2

 r2 du

x2 + y2 … 1
x2 + y2 … 3>4 .

ƒsx, yd = 1>s1 - x2 - y2d

L
q

0
 L

q

0
 

1
s1 + x2 + y2d2 dx dy.

lim
x: q

 erf sxd = lim
x: q

 L
x

0
  
2e-t22p  dt.

15.5 Triple Integrals in Rectangular Coordinates 877

46. Area Suppose that the area of a region in the polar coordinate
plane is

Sketch the region and find its area.

COMPUTER EXPLORATIONS
In Exercises 47–50, use a CAS to change the Cartesian integrals into
an equivalent polar integral and evaluate the polar integral. Perform
the following steps in each exercise.

a. Plot the Cartesian region of integration in the xy-plane.

b. Change each boundary curve of the Cartesian region in part (a)
to its polar representation by solving its Cartesian equation for r
and 

c. Using the results in part (b), plot the polar region of integra-
tion in the 

d. Change the integrand from Cartesian to polar coordinates. 
Determine the limits of integration from your plot in part (c)
and evaluate the polar integral using the CAS integration utility.

47. 48.

49. 50. L
1

0
 L

2 - y

y
2x + y dx dyL

1

0
 L

y>3
-y>3  

y2x2 + y2
 dx dy

L
1

0
 L

x>2
0

 
x

x2 + y2 dy dxL
1

0
 L

1

x
 

y

x2 + y2 dy dx

ru-plane.

u.

A = L
3p>4
p>4  L

2 sin u

csc u
 r dr du.

15.5 Triple Integrals in Rectangular Coordinates

Just as double integrals allow us to deal with more general situations than could be han-
dled by single integrals, triple integrals enable us to solve still more general problems. We
use triple integrals to calculate the volumes of three-dimensional shapes and the average
value of a function over a three-dimensional region. Triple integrals also arise in the study
of vector fields and fluid flow in three dimensions, as we will see in Chapter 16.

Triple Integrals

If F(x, y, z) is a function defined on a closed, bounded region D in space, such as the re-
gion occupied by a solid ball or a lump of clay, then the integral of F over D may be de-
fined in the following way. We partition a rectangular boxlike region containing D into
rectangular cells by planes parallel to the coordinate axes (Figure 15.29). We number the
cells that lie completely inside D from 1 to n in some order, the kth cell having dimensions

by by and volume We choose a point in each
cell and form the sum

(1)

We are interested in what happens as D is partitioned by smaller and smaller cells, so
that and the norm of the partition the largest value among 
all approach zero. When a single limiting value is attained, no matter how the partitions
and points are chosen, we say that F is integrable over D. As before, it can besxk, yk, zkd

¢xk, ¢yk, ¢zk,7P 7 ,¢xk, ¢yk, ¢zk

Sn = an
k = 1

 Fsxk, yk, zkd ¢Vk.

sxk, yk, zkd¢Vk = ¢xk¢yk¢zk.¢zk¢yk¢xk

z

y
x

D

(xk, yk, zk)

!zk

!xk
!yk

FIGURE 15.29 Partitioning a solid with
rectangular cells of volume ¢Vk .
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EXAMPLE 4 Find the average value of throughout the cubical region
D bounded by the coordinate planes and the planes and in the first
octant.

Solution We sketch the cube with enough detail to show the limits of integration
(Figure 15.33). We then use Equation (2) to calculate the average value of F over the
cube.

The volume of the region D is The value of the integral of F over the
cube is

With these values, Equation (2) gives

In evaluating the integral, we chose the order dx dy dz, but any of the other five possible
orders would have done as well.

Properties of Triple Integrals

Triple integrals have the same algebraic properties as double and single integrals. Simply
replace the double integrals in the four properties given in Section 15.2, page 864, with
triple integrals.

Average value of
xyz over the cube

= 1
volume

 9
cube

 xyz dV = a18 b s8d = 1.

 = L
2

0
 cy2z d

y = 0

y = 2

 dz = L
2

0
4z dz = c2z2 d

0

2

= 8.

 L
2

0
 L

2

0
 L

2

0
 xyz dx dy dz = L

2

0
 L

2

0
 cx2

2  yz d
x = 0

x = 2

 dy dz = L
2

0
 L

2

0
2yz dy dz

s2ds2ds2d = 8.

z = 2x = 2, y = 2,
Fsx, y, zd = xyz

15.5 Triple Integrals in Rectangular Coordinates 883

z

y

D

2

x

2

2

FIGURE 15.33 The region of integration
in Example 4.

Exercises 15.5

Triple Integrals in Different Iteration Orders
1. Evaluate the integral in Example 2 taking to find

the volume of the tetrahedron in the order dz dx dy.

2. Volume of rectangular solid Write six different iterated triple
integrals for the volume of the rectangular solid in the first octant
bounded by the coordinate planes and the planes 
and Evaluate one of the integrals.

3. Volume of tetrahedron Write six different iterated triple inte-
grals for the volume of the tetrahedron cut from the first octant by
the plane Evaluate one of the integrals.

4. Volume of solid Write six different iterated triple integrals for
the volume of the region in the first octant enclosed by the cylin-
der and the plane Evaluate one of the 
integrals.

5. Volume enclosed by paraboloids Let D be the region bounded
by the paraboloids and Write six
different triple iterated integrals for the volume of D. Evaluate
one of the integrals.

6. Volume inside paraboloid beneath a plane Let D be the region
bounded by the paraboloid and the plane 
Write triple iterated integrals in the order and 
that give the volume of D. Do not evaluate either integral.

dz dy dxdz dx dy
z = 2y.z = x2 + y2

z = x2 + y2.z = 8 - x2 - y2

y = 3.x2 + z2 = 4

6x + 3y + 2z = 6.

z = 3.
x = 1, y = 2,

Fsx, y, zd = 1
Evaluating Triple Iterated Integrals
Evaluate the integrals in Exercises 7–20.

7.

8. 9.

10. 11.

12.

13. 14.

15. 16.

17.

18. L
1

0
 L
2e

1
 L

e

1
 ses ln r 

(ln t)2

t  dt dr ds srst-spaced

L
p

0
 L
p

0
 L
p

0
 cos su + y + wd du dy dw suyw-spaced

L
1

0
 L

1 - x2

0
 L

4 - x2 - y

3
 x dz dy dxL

1

0
 L

2 - x

0
 L

2 - x - y

0
 dz dy dx

L
2

0
 L
24 - y2

-24 - y2
  L

2x + y

0
 dz dx dyL

3

0
 L
29 - x2

0
 L
29 - x2

0
 dz dy dx

L
1

-1
  L

1

0
  L

2

0
sx + y + zd dy dx dz

L
p>6

0
 L

1

0
 L

3

-2
 y sin z dx dy dzL

1

0
 L

3 - 3x

0
 L

3 - 3x - y

0
 dz dy dx

L
e

1
 L

e2

1
 L

e3

1
 

1
xyz dx dy dzL

22

0
 L

3y

0
 L

8 - x2 - y2

x2 + 3y2
 dz dx dy

L
1

0
 L

1

0
 L

1

0
sx2 + y2 + z2d dz dy dx
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884 Chapter 15: Multiple Integrals

19.

20.

Finding Equivalent Iterated Integrals
21. Here is the region of integration of the integral

Rewrite the integral as an equivalent iterated integral in the order

a. dy dz dx b. dy dx dz

c. dx dy dz d. dx dz dy

e. dz dx dy.

22. Here is the region of integration of the integral

Rewrite the integral as an equivalent iterated integral in the order

a. dy dz dx b. dy dx dz

c. dx dy dz d. dx dz dy

e. dz dx dy.

Finding Volumes Using Triple Integrals
Find the volumes of the regions in Exercises 23–36.

23. The region between the cylinder and the xy-plane that is
bounded by the planes  

z

x

y

x = 0, x = 1, y = -1, y = 1
z = y2

0

z

y

x
1

1

(1, –1, 0)

(1, –1, 1)

(0, –1, 1)

z ! y2

L
1

0
 L

0

-1 
  L

y2

0
 dz dy dx.

11

1

(1, 1, 0)

y

x

z

Top:  y " z ! 1

(–1, 1, 0)

Side:
y ! x2

–1

L
1

-1
  L

1

x2
  L

1 - y

0
 dz dy dx.

L
7

0
 L

2

0
 L
24 - q2

0
 

q
r + 1

 dp dq dr spqr-spaced

L
p>4

0
 L

ln sec y

0
 L

2t

-q
 ex dx dt dy styx-spaced

24. The region in the first octant bounded by the coordinate planes
and the planes 

25. The region in the first octant bounded by the coordinate planes,
the plane and the cylinder 

26. The wedge cut from the cylinder by the planes
and 

27. The tetrahedron in the first octant bounded by the coordinate planes
and the plane passing through (1, 0, 0), (0, 2, 0), and (0, 0, 3)

28. The region in the first octant bounded by the coordinate planes,
the plane and the surface 

z

y

x

0 … x … 1
z = cos spx>2d,y = 1 - x,

z

y

x

(1, 0, 0)

(0, 2, 0)

(0, 0, 3)

z

y

x

z = 0z = -y
x2 + y2 = 1

z

y

x

x = 4 - y2y + z = 2,

z

y
x

x + z = 1, y + 2z = 2
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29. The region common to the interiors of the cylinders 
and one-eighth of which is shown in the accompa-
nying figure

30. The region in the first octant bounded by the coordinate planes
and the surface 

31. The region in the first octant bounded by the coordinate planes,
the plane and the cylinder 

32. The region cut from the cylinder by the plane 
and the plane 

y

x

z
x + z = 3

z = 0x2 + y2 = 4

z

y

x

y2 + 4z2 = 16x + y = 4,

z

y

x

z = 4 - x2 - y

z

y
x

x2 1 z2 5 1

x2 1 y2 5 1

x2 + z2 = 1,
x2 + y2 = 1

15.5 Triple Integrals in Rectangular Coordinates 885

33. The region between the planes and 
in the first octant

34. The finite region bounded by the planes 
and 

35. The region cut from the solid elliptical cylinder by
the xy-plane and the plane 

36. The region bounded in back by the plane on the front and
sides by the parabolic cylinder on the top by the pa-
raboloid and on the bottom by the xy-plane

Average Values
In Exercises 37–40, find the average value of F(x, y, z) over the given
region.

37. over the cube in the first octant bounded by
the coordinate planes and the planes and 

38. over the rectangular solid in the first
octant bounded by the coordinate planes and the planes

and 

39. over the cube in the first octant
bounded by the coordinate planes and the planes 
and 

40. over the cube in the first octant bounded by the
coordinate planes and the planes and 

Changing the Order of Integration
Evaluate the integrals in Exercises 41–44 by changing the order of 
integration in an appropriate way.

41.

42.

43.

44.

Theory and Examples
45. Finding an upper limit of an iterated integral Solve for a:

46. Ellipsoid For what value of c is the volume of the ellipsoid
equal to 

47. Minimizing a triple integral What domain D in space mini-
mizes the value of the integral

Give reasons for your answer.

48. Maximizing a triple integral What domain D in space maxi-
mizes the value of the integral

Give reasons for your answer.

9
D

s1 - x2 - y2 - z2d dV ?

9
D

s4x2 + 4y2 + z2 - 4d dV ?

8p?x2 + sy>2d2 + sz>cd2 = 1

L
1

0
 L

4 - a - x2

0
 L

4 - x2 - y

a
 dz dy dx = 4

15
.

L
2

0
 L

4 - x2

0
 L

x

0
 
sin 2z
4 - z

 dy dz dx

L
1

0
 L

1

32z
  L

ln 3

0
 
pe2x sin py2

y2  dx dy dz

L
1

0
 L

1

0
 L

1

x2
12xze zy2

 dy dx dz

L
4

0
 L

1

0
 L

2

2y
 
4 cos sx2d

22z
 dx dy dz

z = 2x = 2, y = 2,
Fsx, y, zd = xyz

z = 1
x = 1, y = 1,

Fsx, y, zd = x2 + y2 + z2

z = 2x = 1, y = 1,

Fsx, y, zd = x + y - z

z = 2x = 2, y = 2,
Fsx, y, zd = x2 + 9

z = x2 + y2,
x = 1 - y2,

x = 0,

z = x + 2
x2 + 4y2 … 4

z = 0y = 8,
z = x, x + z = 8, z = y, 

z = 4
2x + 2y +x + y + 2z = 2

7001_ThomasET_ch15p854–918.qxd  10/30/09  7:57 AM  Page 885



COMPUTER EXPLORATIONS
In Exercises 49–52, use a CAS integration utility to evaluate the triple
integral of the given function over the specified solid region.

49. over the solid cylinder bounded by
and the planes and 

50. over the solid bounded below by the paraboloid
and above by the plane z = 1z = x2 + y2

Fsx, y, zd = ƒ xyz ƒ
z = 1z = 0x2 + y2 = 1

Fsx, y, zd = x2y2z

886 Chapter 15: Multiple Integrals

51. over the solid bounded below by

the cone and above by the plane 

52. over the solid sphere 
z2 … 1

x2 + y2 +Fsx, y, zd = x4 + y2 + z2

z = 1z = 2x2 + y2

Fsx, y, zd = z
sx2 + y2 + z2d3>2

15.6 Moments and Centers of Mass

This section shows how to calculate the masses and moments of two- and three-
dimensional objects in Cartesian coordinates. Section 15.7 gives the calculations for cylin-
drical and spherical coordinates. The definitions and ideas are similar to the single-variable
case we studied in Section 6.6, but now we can consider more realistic situations.

Masses and First Moments

If is the density (mass per unit volume) of an object occupying a region D in space,
the integral of over D gives the mass of the object. To see why, imagine partitioning the ob-
ject into n mass elements like the one in Figure 15.34. The object’s mass is the limit

The first moment of a solid region D about a coordinate plane is defined as the triple in-
tegral over D of the distance from a point (x, y, z) in D to the plane multiplied by the density
of the solid at that point. For instance, the first moment about the yz-plane is the integral

The center of mass is found from the first moments. For instance, the x-coordinate of
the center of mass is .

For a two-dimensional object, such as a thin, flat plate, we calculate first moments
about the coordinate axes by simply dropping the z-coordinate. So the first moment about
the y-axis is the double integral over the region R forming the plate of the distance from
the axis multiplied by the density, or

Table 15.1 summarizes the formulas.

EXAMPLE 1 Find the center of mass of a solid of constant density bounded below 
by the disk in the plane and above by the paraboloid

(Figure 15.35).z = 4 - x2 - y2
z = 0R: x2 + y2 … 4

d

My = 6
R

 xd(x, y) dA.

x = Myz>M
Myz = 9

D

 xdsx, y, zd dV.

M = lim
n: q

 an
k = 1

 ¢mk = lim
n: q

 an
k = 1
dsxk, yk, zkd ¢Vk = 9

D

dsx, y, zd dV.

d
dsx, y, zd

x

z

y

D
(xk, yk, zk)

!mk " !(xk, yk, zk) !Vk

FIGURE 15.34 To define an object’s
mass, we first imagine it to be partitioned
into a finite number of mass elements
¢mk.

z

y

x

0
R

c.m.

x2 # y2 " 4

z " 4 $ x2 $ y2

FIGURE 15.35 Finding the center of
mass of a solid (Example 1).
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Similarly, the moment of inertia about the y-axis is

Notice that we integrate times density in calculating and times density to find 
Since we know and , we do not need to evaluate an integral to find ; we can use

the equation from Table 15.2 instead:

The moment of inertia also plays a role in determining how much a horizontal metal
beam will bend under a load. The stiffness of the beam is a constant times I, the moment of
inertia of a typical cross-section of the beam about the beam’s longitudinal axis. The
greater the value of I, the stiffer the beam and the less it will bend under a given load. That
is why we use I-beams instead of beams whose cross-sections are square. The flanges at
the top and bottom of the beam hold most of the beam’s mass away from the longitudinal
axis to increase the value of I (Figure 15.41).

I0 = 12 + 39
5 = 60 + 39

5 = 99
5 .

I0 = Ix + Iy

I0IyIx

Iy.x2Ixy2

Iy = L
1

0
 L

2x

0
 x2dsx, yd dy dx = 39

5 .

15.6 Moments and Centers of Mass 891

Beam B

Beam A

Axis

Axis

FIGURE 15.41 The greater the polar
moment of inertia of the cross-section of a
beam about the beam’s longitudinal axis, the
stiffer the beam. Beams A and B have the
same cross-sectional area, but A is stiffer.

Exercises 15.6

Plates of Constant Density
1. Finding a center of mass Find the center of mass of a thin

plate of density bounded by the lines and
the parabola in the first quadrant.

2. Finding moments of inertia Find the moments of inertia
about the coordinate axes of a thin rectangular plate of constant
density bounded by the lines and in the first
quadrant.

3. Finding a centroid Find the centroid of the region in the first
quadrant bounded by the x-axis, the parabola and the
line 

4. Finding a centroid Find the centroid of the triangular region
cut from the first quadrant by the line 

5. Finding a centroid Find the centroid of the region cut from the
first quadrant by the circle 

6. Finding a centroid Find the centroid of the region between the
x-axis and the arch 

7. Finding moments of inertia Find the moment of inertia about
the x-axis of a thin plate of density bounded by the circle

Then use your result to find and for the plate.

8. Finding a moment of inertia Find the moment of inertia with
respect to the y-axis of a thin sheet of constant density 
bounded by the curve and the interval

of the x-axis.

9. The centroid of an infinite region Find the centroid of the in-
finite region in the second quadrant enclosed by the coordinate
axes and the curve (Use improper integrals in the mass-
moment formulas.)

y = ex.

p … x … 2p
y = ssin2 xd>x2

d = 1

I0Iyx2 + y2 = 4.
d = 1

y = sin x, 0 … x … p.

x2 + y2 = a2.

x + y = 3.

x + y = 4.
y2 = 2x,

y = 3x = 3d

y = 2 - x2
y = x,x = 0,d = 3

10. The first moment of an infinite plate Find the first moment
about the y-axis of a thin plate of density covering the
infinite region under the curve in the first quadrant.

Plates with Varying Density
11. Finding a moment of inertia Find the moment of inertia about

the x-axis of a thin plate bounded by the parabola and
the line if 

12. Finding mass Find the mass of a thin plate occupying the
smaller region cut from the ellipse by the
parabola if 

13. Finding a center of mass Find the center of mass of a thin tri-
angular plate bounded by the y-axis and the lines and

if 
14. Finding a center of mass and moment of inertia Find the

center of mass and moment of inertia about the x-axis of a thin
plate bounded by the curves and if the den-
sity at the point (x, y) is 

15. Center of mass, moment of inertia Find the center of mass
and the moment of inertia about the y-axis of a thin rectangular
plate cut from the first quadrant by the lines and if

16. Center of mass, moment of inertia Find the center of mass
and the moment of inertia about the y-axis of a thin plate bounded
by the line and the parabola if the density is

17. Center of mass, moment of inertia Find the center of mass
and the moment of inertia about the y-axis of a thin plate bounded
by the x-axis, the lines and the parabola if
dsx, yd = 7y + 1.

y = x2x = ;1,

dsx, yd = y + 1.
y = x2y = 1

y + 1.dsx, yd = x +
y = 1x = 6

dsx, yd = y + 1.
x = 2y - y2x = y2

dsx, yd = 6x + 3y + 3.y = 2 - x
y = x

dsx, yd = 5x.x = 4y2
x2 + 4y2 = 12

dsx, yd = x + y.x + y = 0
x = y - y2

y = e-x2>2dsx, yd = 1
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18. Center of mass, moment of inertia Find the center of mass
and the moment of inertia about the x-axis of a thin rectangular
plate bounded by the lines and if

19. Center of mass, moments of inertia Find the center of mass,
the moment of inertia about the coordinate axes, and the
polar moment of inertia of a thin triangular plate bounded by the
lines and if 

20. Center of mass, moments of inertia Repeat Exercise 19 for

Solids with Constant Density
21. Moments of inertia Find the moments of inertia of the rectan-

gular solid shown here with respect to its edges by calculating
and 

22. Moments of inertia The coordinate axes in the figure run
through the centroid of a solid wedge parallel to the labeled
edges. Find and if and 

23. Center of mass and moments of inertia A solid “trough” of
constant density is bounded below by the surface above
by the plane and on the ends by the planes and

Find the center of mass and the moments of inertia with
respect to the three axes.

24. Center of mass A solid of constant density is bounded below
by the plane on the sides by the elliptical cylinder

and above by the plane (see the ac-
companying figure).

a. Find and 
b. Evaluate the integral

using integral tables to carry out the final integration with respect
to x. Then divide by M to verify that z = 5>4.Mxy

Mxy = L
2

-2
 L

s1>2d24 - x2

-s1>2d24 - x2
 L

2 - x

0
 z dz dy dx

y.x

z = 2 - xx2 + 4y2 = 4,
z = 0,

x = -1.
x = 1z = 4,

z = 4y2,

z

y

x b

a

Centroid
at (0, 0, 0)

c b
3

a
2

c
3

c = 4.a = b = 6IzIx , Iy,

z

y

x

c

b

a

Iz.Ix, Iy,

dsx, yd = 3x2 + 1.

dsx, yd = y + 1.y = 1y = x, y = -x,

sx>20d.dsx, yd = 1 +
y = 1x = 0, x = 20, y = -1,

25. a. Center of mass Find the center of mass of a solid of con-
stant density bounded below by the paraboloid 
and above by the plane 

b. Find the plane that divides the solid into two parts of equal
volume. This plane does not pass through the center of mass.

26. Moments A solid cube, 2 units on a side, is bounded by the
planes and Find the center of
mass and the moments of inertia about the coordinate axes.

27. Moment of inertia about a line A wedge like the one in Exer-
cise 22 has and Make a quick sketch to
check for yourself that the square of the distance from a typical
point (x, y, z) of the wedge to the line is

Then calculate the moment of inertia of the
wedge about L.

28. Moment of inertia about a line A wedge like the one in Exer-
cise 22 has and Make a quick sketch to
check for yourself that the square of the distance from a typical
point (x, y, z) of the wedge to the line is

Then calculate the moment of inertia of the
wedge about L.

Solids with Varying Density
In Exercises 29 and 30, find

a. the mass of the solid. b. the center of mass.
29. A solid region in the first octant is bounded by the coordinate

planes and the plane The density of the solid is

30. A solid in the first octant is bounded by the planes and 
and by the surfaces and (see the accompanying
figure). Its density function is a constant.

z

y

x

2

4

x 5 y2

(2, !2, 0)

z 5 4 2 x2

dsx, y, zd = kxy, k
x = y2z = 4 - x2

z = 0y = 0
dsx, y, zd = 2x.

x + y + z = 2.

r2 = sx - 4d2 + y2.
L: x = 4, y = 0

c = 3.a = 4, b = 6,

r2 = s y - 6d2 + z2.
L: z = 0, y = 6

c = 3.a = 4, b = 6,

y = 5.x = ;1, z = ;1, y = 3,

z = c

z = 4.
z = x2 + y2

z

y

x

1

2

2

z ! 2 " x

x ! –2

x 2 # 4y2 ! 4
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In Exercises 31 and 32, find

a. the mass of the solid. b. the center of mass.

c. the moments of inertia about the coordinate axes.

31. A solid cube in the first octant is bounded by the coordinate
planes and by the planes and The density of
the cube is 

32. A wedge like the one in Exercise 22 has dimensions 
and The density is Notice that if the
density is constant, the center of mass will be (0, 0, 0).

33. Mass Find the mass of the solid bounded by the planes
and the surface The

density of the solid is 

34. Mass Find the mass of the solid region bounded by the para-
bolic surfaces and if the
density of the solid is 

Theory and Examples
The Parallel Axis Theorem Let be a line through the center of
mass of a body of mass m and let L be a parallel line h units away from

The Parallel Axis Theorem says that the moments of inertia 
and of the body about and L satisfy the equation

(2)

As in the two-dimensional case, the theorem gives a quick way to
calculate one moment when the other moment and the mass are
known.

35. Proof of the Parallel Axis Theorem

a. Show that the first moment of a body in space about any
plane through the body’s center of mass is zero. (Hint: Place
the body’s center of mass at the origin and let the plane be
the yz-plane. What does the formula then tell
you?)

x = Myz >M

IL = Ic.m. + mh2.

Lc.m.IL

Ic.m.Lc.m..

Lc.m.

dsx, y, zd = 2x2 + y2 .
z = 2x2 + 2y2z = 16 - 2x2 - 2y2

dsx, y, zd = 2y + 5.
y = 2z.x + z = 1,  x - z = -1,  y = 0

dsx, y, zd = x + 1.c = 3.
a = 2, b = 6,

dsx, y, zd = x + y + z + 1.
z = 1.x = 1, y = 1,

15.7 Triple Integrals in Cylindrical and Spherical Coordinates 893

b. To prove the Parallel Axis Theorem, place the body with its
center of mass at the origin, with the line along the z-axis
and the line L perpendicular to the xy-plane at the point (h, 0, 0).
Let D be the region of space occupied by the body. Then, in
the notation of the figure,

Expand the integrand in this integral and complete the proof.

36. The moment of inertia about a diameter of a solid sphere of constant
density and radius a is where m is the mass of the sphere.
Find the moment of inertia about a line tangent to the sphere.

37. The moment of inertia of the solid in Exercise 21 about the z-axis
is 

a. Use Equation (2) to find the moment of inertia of the solid about
the line parallel to the z-axis through the solid’s center of mass.

b. Use Equation (2) and the result in part (a) to find the moment
of inertia of the solid about the line 

38. If and the moment of inertia of the solid wedge
in Exercise 22 about the x-axis is Find the moment of
inertia of the wedge about the line (the edge of
the wedge’s narrow end).

y = 4, z = -4>3Ix = 208.
c = 4,a = b = 6

x = 0, y = 2b.

Iz = abcsa2 + b2d>3.

s2>5dma2,

IL = 9
D

ƒ v - hi ƒ 2 dm.

Lc.m.

z

x

y
c.m.

L

D

v 5 xi 1 yj

(x, y, z)

Lc.m.

hi

v 2 hi

(h, 0, 0)

15.7 Triple Integrals in Cylindrical and Spherical Coordinates

When a calculation in physics, engineering, or geometry involves a cylinder, cone, or
sphere, we can often simplify our work by using cylindrical or spherical coordinates,
which are introduced in this section. The procedure for transforming to these coordinates
and evaluating the resulting triple integrals is similar to the transformation to polar coordi-
nates in the plane studied in Section 15.4.

Integration in Cylindrical Coordinates

We obtain cylindrical coordinates for space by combining polar coordinates in the xy-plane
with the usual z-axis. This assigns to every point in space one or more coordinate triples of
the form as shown in Figure 15.42.sr, u, zd,

0

r
x

z

y
y

z

x

P(r, u, z)

u

FIGURE 15.42 The cylindrical
coordinates of a point in space are r, 
and z.

u,

DEFINITION Cylindrical coordinates represent a point P in space by ordered
triples in which

1. r and are polar coordinates for the vertical projection of P on the xy-plane

2. z is the rectangular vertical coordinate.

u

sr, u, zd
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In the next section we offer a more general procedure for determining dV in cylindri-
cal and spherical coordinates. The results, of course, will be the same.

15.7 Triple Integrals in Cylindrical and Spherical Coordinates 901

Coordinate Conversion Formulas

CYLINDRICAL TO SPHERICAL TO SPHERICAL TO

RECTANGULAR RECTANGULAR CYLINDRICAL

Corresponding formulas for dV in triple integrals:

 = r2 sin f dr df du

 = dz r dr du

 dV = dx dy dz

 u = u z = r cos f z = z

 z = r cos f y = r sin f sin u y = r sin u

 r = r sin f x = r sin f cos u x = r cos u

Exercises 15.7

Evaluating Integrals in Cylindrical Coordinates
Evaluate the cylindrical coordinate integrals in Exercises 1–6.

1. 2.

3. 4.

5.

6.

Changing the Order of Integration in Cylindrical Coordinates
The integrals we have seen so far suggest that there are preferred or-
ders of integration for cylindrical coordinates, but other orders usually
work well and are occasionally easier to evaluate. Evaluate the inte-
grals in Exercises 7–10.

7. 8.

9.

10.

11. Let D be the region bounded below by the plane above by
the sphere and on the sides by the cylinder

Set up the triple integrals in cylindrical coordi-
nates that give the volume of D using the following orders of in-
tegration.

a. b. c.

12. Let D be the region bounded below by the cone 
and above by the paraboloid Set up the triplez = 2 - x2 - y2.

z = 2x2 + y2

du dz drdr dz dudz dr du

x2 + y2 = 1.
x2 + y2 + z2 = 4,

z = 0,
L

2

0
 L
24 - r2

r - 2
 L

2p

0
sr sin u + 1d r du dz dr

L
1

0
 L
2z

0
 L

2p

0
sr2 cos2 u + z2d r du dr dz

L
1

-1
 L

2p

0
 L

1 + cos u

0
4r dr du dzL

2p

0
 L

3

0
 L

z>3
0

 r3 dr dz du

L
2p

0
 L

1

0
 L

1>2
-1>2sr2 sin2 u + z2d dz r dr du

L
2p

0
 L

1

0
 L

1>22 - r2

r
3 dz r dr du

L
p

0
 L
u>p

0
 L

324 - r2

-24 - r2
 z dz r dr duL

2p

0
 L
u>2p

0
 L

3 + 24r2

0
 dz r dr du

L
2p

0
 L

3

0
 L
218 - r2

r2>3  dz r dr duL
2p

0
 L

1

0
 L
22 - r2

r
 dz r dr du

integrals in cylindrical coordinates that give the volume of D us-
ing the following orders of integration.

a. b. c.

Finding Iterated Integrals in Cylindrical Coordinates
13. Give the limits of integration for evaluating the integral

as an iterated integral over the region that is bounded below by the
plane on the side by the cylinder and on top by
the paraboloid 

14. Convert the integral

to an equivalent integral in cylindrical coordinates and evaluate
the result.

In Exercises 15–20, set up the iterated integral for evaluating
over the given region D.

15. D is the right circular cylinder whose base is the circle 
in the xy-plane and whose top lies in the plane 

z

y

x

z ! 4 " y

r ! 2 sin !

z = 4 - y.
r = 2 sin u

7D ƒsr, u, zd dz r dr du

L
1

-1
 L
21 - y2

0
 L

x

0
sx2 + y2d dz dx dy

z = 3r2.
r = cos u,z = 0,

9 ƒsr, u, zd dz r dr du

du dz drdr dz dudz dr du

7001_ThomasET_ch15p854–918.qxd  10/30/09  7:58 AM  Page 901



902 Chapter 15: Multiple Integrals

16. D is the right circular cylinder whose base is the circle
and whose top lies in the plane 

17. D is the solid right cylinder whose base is the region in the 
xy-plane that lies inside the cardioid and outside
the circle and whose top lies in the plane 

18. D is the solid right cylinder whose base is the region between the
circles and and whose top lies in the plane

19. D is the prism whose base is the triangle in the xy-plane bounded
by the x-axis and the lines and and whose top lies in
the plane 

20. D is the prism whose base is the triangle in the xy-plane bounded
by the y-axis and the lines and and whose top lies in
the plane z = 2 - x.

y = 1y = x

y

z

x

2

1
y ! x

z ! 2 " y

z = 2 - y.
x = 1y = x

z

y

x

r ! 2 cos !

r ! cos !

z ! 3 " y

z = 3 - y.
r = 2 cos ur = cos u

z

y

x

4

r ! 1 # cos !

r ! 1

z = 4.r = 1
r = 1 + cos u

x
r 5 3 cos u

y

z 5 5 2 x

z

z = 5 - x.r = 3 cos u

Evaluating Integrals in Spherical Coordinates
Evaluate the spherical coordinate integrals in Exercises 21–26.

21.

22.

23.

24.

25.

26.

Changing the Order of Integration in Spherical Coordinates
The previous integrals suggest there are preferred orders of integra-
tion for spherical coordinates, but other orders give the same value
and are occasionally easier to evaluate. Evaluate the integrals in Exer-
cises 27–30.

27.

28.

29.

30.

31. Let D be the region in Exercise 11. Set up the triple integrals in
spherical coordinates that give the volume of D using the follow-
ing orders of integration.

a. b.

32. Let D be the region bounded below by the cone 
and above by the plane Set up the triple integrals in spher-
ical coordinates that give the volume of D using the following or-
ders of integration.

a. b. df dr dudr df du

z = 1.
z = 2x2 + y2

df dr dudr df du

L
p>2
p>6  L

p/2

-p/2 
 L

2

csc f
5r4 sin3 f dr du df

L
1

0
 L
p

0
 L
p>4

0
12r sin3 f df du dr

L
p>3
p>6  L

2 csc f

csc f
 L

2p

0
r2 sin f du dr df

L
2

0
 L

0

-p
   L

p>2
p>4 r3 sin 2f df du dr

L
2p

0
 L
p>4

0
 L

sec f

0
sr cos fd r2 sin f dr df du

L
2p

0
 L
p>3

0
 L

2

sec f
3r2 sin f dr df du

L
3p>2

0
 L
p

0
 L

1

0
5r3 sin3 f dr df du

L
2p

0
 L
p

0
 L

s1 - cos fd>2
0

r2 sin f dr df du

L
2p

0
 L
p>4

0
 L

2

0
sr cos fd r2 sin f dr df du

L
p

0
 L
p

0
 L

2 sin f

0
r2 sin f dr df du

y

z

x

2

1

y ! x

z ! 2 " x
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Finding Iterated Integrals in Spherical Coordinates
In Exercises 33–38, (a) find the spherical coordinate limits for the in-
tegral that calculates the volume of the given solid and then (b) evalu-
ate the integral.

33. The solid between the sphere and the hemisphere

34. The solid bounded below by the hemisphere and
above by the cardioid of revolution 

35. The solid enclosed by the cardioid of revolution 

36. The upper portion cut from the solid in Exercise 35 by the 
xy-plane

37. The solid bounded below by the sphere and above by
the cone 

38. The solid bounded below by the xy-plane, on the sides by the
sphere and above by the cone 

Finding Triple Integrals
39. Set up triple integrals for the volume of the sphere in 

(a) spherical, (b) cylindrical, and (c) rectangular coordinates.

40. Let D be the region in the first octant that is bounded below by
the cone and above by the sphere Express ther = 3.f = p>4

r = 2

yx

f 5
p
3

r 5 2

z

f = p>3r = 2,

yx

r 5 2 cos f

z 5 !x2 1 y2z

z = 2x2 + y2
r = 2 cos f

r = 1 - cos f

yx

r 5 1
r 5 1 1 cos f

z

r = 1 + cos f
r = 1, z Ú 0,

yx 2 2

2 r 5 2r 5 cos f

z

r = 2, z Ú 0
r = cos f

15.7 Triple Integrals in Cylindrical and Spherical Coordinates 903

volume of D as an iterated triple integral in (a) cylindrical and 
(b) spherical coordinates. Then (c) find V.

41. Let D be the smaller cap cut from a solid ball of radius 2 units by
a plane 1 unit from the center of the sphere. Express the volume
of D as an iterated triple integral in (a) spherical, (b) cylindrical,
and (c) rectangular coordinates. Then (d) find the volume by eval-
uating one of the three triple integrals.

42. Express the moment of inertia of the solid hemisphere
as an iterated integral in (a) cylindri-

cal and (b) spherical coordinates. Then (c) find 

Volumes
Find the volumes of the solids in Exercises 43–48.

43. 44.

45. 46.

47. 48.

49. Sphere and cones Find the volume of the portion of the solid
sphere that lies between the cones and

50. Sphere and half-planes Find the volume of the region cut from
the solid sphere by the half-planes and in
the first octant.

51. Sphere and plane Find the volume of the smaller region cut
from the solid sphere by the plane 

52. Cone and planes Find the volume of the solid enclosed by the
cone between the planes and 

53. Cylinder and paraboloid Find the volume of the region
bounded below by the plane laterally by the cylinder

and above by the paraboloid z = x2 + y2.x2 + y2 = 1,
z = 0,

z = 2.z = 1z = 2x2 + y2

z = 1.r … 2

u = p>6u = 0r … a

f = 2p>3.
f = p>3r … a

r 5 cos u

z 5 3!1 2 x2 2 y2

yx

zz

y
x

z ! !1 " x2 " y2

r ! sin !

z

yx

z ! !x2 # y2

r ! –3 cos !

z

y

x

r ! 3 cos !

z ! –y

z 5 2!1 2 r2

z 5 1 2 r

z

yx 11

21 21

z

yx

z ! 4 " 4 (x2 # y2)

z ! (x2 # y2)2 "1

Iz.
x2 + y2 + z2 … 1, z Ú 0,

Iz
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54. Cylinder and paraboloids Find the volume of the region bounded
below by the paraboloid laterally by the cylinder

and above by the paraboloid 

55. Cylinder and cones Find the volume of the solid cut from the
thick-walled cylinder by the cones 

56. Sphere and cylinder Find the volume of the region that lies in-
side the sphere and outside the cylinder

57. Cylinder and planes Find the volume of the region enclosed by
the cylinder and the planes and 

58. Cylinder and planes Find the volume of the region enclosed 
by the cylinder and the planes and

59. Region trapped by paraboloids Find the volume of the region
bounded above by the paraboloid and below by
the paraboloid 

60. Paraboloid and cylinder Find the volume of the region
bounded above by the paraboloid below by the
xy-plane, and lying outside the cylinder 

61. Cylinder and sphere Find the volume of the region cut from
the solid cylinder by the sphere 

62. Sphere and paraboloid Find the volume of the region bounded
above by the sphere and below by the parabo-
loid 

Average Values
63. Find the average value of the function over the re-

gion bounded by the cylinder between the planes 
and 

64. Find the average value of the function over the solid
ball bounded by the sphere (This is the sphere

)

65. Find the average value of the function over the
solid ball 

66. Find the average value of the function over
the solid upper ball 

Masses, Moments, and Centroids
67. Center of mass A solid of constant density is bounded below

by the plane above by the cone and on the
sides by the cylinder Find the center of mass.

68. Centroid Find the centroid of the region in the first octant that
is bounded above by the cone below by the plane

and on the sides by the cylinder and the
planes and 

69. Centroid Find the centroid of the solid in Exercise 38.

70. Centroid Find the centroid of the solid bounded above by the
sphere and below by the cone 

71. Centroid Find the centroid of the region that is bounded above
by the surface on the sides by the cylinder and
below by the xy-plane.

72. Centroid Find the centroid of the region cut from the solid ball
by the half-planes and 

r Ú 0.
u = p>3,u = -p>3, r Ú 0,r2 + z2 … 1

r = 4,z = 2r,

f = p>4.r = a

y = 0.x = 0
x2 + y2 = 4z = 0,

z = 2x2 + y2,

r = 1.
z = r, r Ú 0,z = 0,

r … 1, 0 … f … p>2.
ƒsr, f, ud = r cos f

r … 1.
ƒsr, f, ud = r

x2 + y2 + z2 = 1.
r2 + z2 = 1.

ƒsr, u, zd = r

z = 1.
z = -1r = 1

ƒsr, u, zd = r

z = x2 + y2.
x2 + y2 + z2 = 2

z2 = 4.x2 + y2 +x2 + y2 … 1

x2 + y2 = 1.
z = 9 - x2 - y2,

z = 4x2 + 4y2.
z = 5 - x2 - y2

x + y + z = 4.
z = 0x2 + y2 = 4

y + z = 4.z = 0x2 + y2 = 4

x2 + y2 = 1.
x2 + y2 + z2 = 2

;2x2 + y2.
z =1 … x2 + y2 … 2

x2 + y2 + 1.z =x2 + y2 = 1,
z = x2 + y2,
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73. Moment of inertia of solid cone Find the moment of inertia of
a right circular cone of base radius 1 and height 1 about an axis
through the vertex parallel to the base. (Take )

74. Moment of inertia of solid sphere Find the moment of inertia
of a solid sphere of radius a about a diameter. (Take )

75. Moment of inertia of solid cone Find the moment of inertia of
a right circular cone of base radius a and height h about its axis.
(Hint: Place the cone with its vertex at the origin and its axis
along the z-axis.)

76. Variable density A solid is bounded on the top by the parabo-
loid on the bottom by the plane and on the sides by
the cylinder Find the center of mass and the moment of in-
ertia about the z-axis if the density is

a. b.

77. Variable density A solid is bounded below by the cone
and above by the plane Find the center of

mass and the moment of inertia about the z-axis if the density is

a. b.

78. Variable density A solid ball is bounded by the sphere 
Find the moment of inertia about the z-axis if the density is

a. b.

79. Centroid of solid semiellipsoid Show that the centroid of the
solid semiellipsoid of revolution 
lies on the z-axis three-eighths of the way from the base to the top.
The special case gives a solid hemisphere. Thus, the cen-
troid of a solid hemisphere lies on the axis of symmetry three-
eighths of the way from the base to the top.

80. Centroid of solid cone Show that the centroid of a solid right
circular cone is one-fourth of the way from the base to the vertex.
(In general, the centroid of a solid cone or pyramid is one-fourth
of the way from the centroid of the base to the vertex.)

81. Density of center of a planet A planet is in the shape of a
sphere of radius R and total mass M with spherically symmetric
density distribution that increases linearly as one approaches its
center. What is the density at the center of this planet if the den-
sity at its edge (surface) is taken to be zero?

82. Mass of planet’s atmosphere A spherical planet of radius R has
an atmosphere whose density is where h is the altitude
above the surface of the planet, is the density at sea level, and c is
a positive constant. Find the mass of the planet’s atmosphere.

Theory and Examples
83. Vertical planes in cylindrical coordinates

a. Show that planes perpendicular to the x-axis have equations
of the form in cylindrical coordinates.

b. Show that planes perpendicular to the y-axis have equations
of the form 

84. (Continuation of Exercise 83. ) Find an equation of the form
in cylindrical coordinates for the plane 

85. Symmetry What symmetry will you find in a surface that has
an equation of the form in cylindrical coordinates? Give
reasons for your answer.

86. Symmetry What symmetry will you find in a surface that has
an equation of the form in spherical coordinates? Give
reasons for your answer.

r = ƒsfd

r = ƒszd

c Z 0.
ax + by = c,r = ƒsud

r = b csc u.

r = a sec u

m0

m = m0 e-ch,

h = a

sr2>a2d + sz2>h2d … 1, z Ú 0,

dsr, f, ud = r = r sin f.dsr, f, ud = r2

r = a.

dsr, u, zd = z2.dsr, u, zd = z

z = 1.z = 2x2 + y2

dsr, u, zd = r.dsr, u, zd = z

r = 1.
z = 0,z = r2,

d = 1.

d = 1.
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The Jacobian of the transformation, again from Equations (9), is

We now have everything we need to apply Equation (7):

 = 6 Cw + w2 D01 = 6s2d = 12.

 = 6L
1

0
 L

2

0
 a12 + wb  dy dw = 6L

1

0
 cy2 + yw d

0

2

 dw = 6L
1

0
s1 + 2wd dw

 = L
1

0
 L

2

0
 L

1

0
su + wds6d du dy dw = 6L

1

0
 L

2

0
 cu2

2 + uw d
0

1

 dy dw

 = L
1

0
 L

2

0
 L

1

0
su + wd ƒ Jsu, y, wd ƒ du dy dw

 L
3

0
 L

4

0
 L

x = sy>2d + 1

x = y>2  a2x - y
2 + z

3 b  dx dy dz

Jsu, y, wd = 6 0x
0u

0x
0y

0x
0w

0y
0u

0y
0y

0y
0w

0z
0u

0z
0y

0z
0w

6 = 3 1 1 0
0 2 0
0 0 3

3 = 6.
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Exercises 15.8

Jacobians and Transformed Regions in the Plane
1. a. Solve the system

for x and y in terms of u and . Then find the value of the 
Jacobian 

b. Find the image under the transformation 
of the triangular region with vertices (0, 0), (1, 1),

and in the xy-plane. Sketch the transformed region in
the uy-plane.

2. a. Solve the system

for x and y in terms of u and . Then find the value of the 
Jacobian 

b. Find the image under the transformation 
of the triangular region in the xy-plane bounded

by the lines and Sketch the trans-
formed region in the uy-plane.

3. a. Solve the system

for x and y in terms of u and y. Then find the value of the 
Jacobian 

b. Find the image under the transformation 
of the triangular region in the xy-plane boundedy = x + 4y

u = 3x + 2y,

0sx, yd>0su, yd.

u = 3x + 2y, y = x + 4y

x + 2y = 2.y = 0, y = x ,
y = x - y

u = x + 2y,

0sx, yd>0su, yd.
y

u = x + 2y, y = x - y

s1, -2d
y = 2x + y

u = x - y,

0sx, yd>0su, yd.
y

u = x - y, y = 2x + y

by the x-axis, the y-axis, and the line Sketch the
transformed region in the uy-plane.

4. a. Solve the system

for x and y in terms of u and y. Then find the value of the 
Jacobian 

b. Find the image under the transformation 
of the parallelogram R in the xy-plane with

boundaries and Sketch
the transformed region in the uy-plane.

Substitutions in Double Integrals
5. Evaluate the integral

from Example 1 directly by integration with respect to x and y to
confirm that its value is 2.

6. Use the transformation in Exercise 1 to evaluate the integral

for the region R in the first quadrant bounded by the lines
and y = x + 1.y = -2x + 4, y = -2x + 7, y = x - 2,

6
R

s2x2 - xy - y2d dx dy

L
4

0
 L

x = s y>2d + 1

x = y>2  
2x - y

2
 dx dy

y = x + 1.x = -3, x = 0, y = x,
y = -x + y

u = 2x - 3y,

0sx, yd>0su, yd.

u = 2x - 3y, y = -x + y

x + y = 1.
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7. Use the transformation in Exercise 3 to evaluate the integral

for the region R in the first quadrant bounded by the lines
and 

8. Use the transformation and parallelogram R in Exercise 4 to eval-
uate the integral

9. Let R be the region in the first quadrant of the xy-plane bounded
by the hyperbolas and the lines 
Use the transformation with and 
to rewrite

as an integral over an appropriate region G in the uy-plane. Then
evaluate the uy-integral over G.

10. a. Find the Jacobian of the transformation and
sketch the region , in the uy-plane.

b. Then use Equation (1) to transform the integral

into an integral over G, and evaluate both integrals.

11. Polar moment of inertia of an elliptical plate A thin plate of
constant density covers the region bounded by the ellipse

in the xy-plane. Find the
first moment of the plate about the origin. (Hint: Use the transfor-
mation )

12. The area of an ellipse The area of the ellipse
can be found by integrating the function

over the region bounded by the ellipse in the xy-plane.
Evaluating the integral directly requires a trigonometric substitu-
tion. An easier way to evaluate the integral is to use the transfor-
mation and evaluate the transformed integral over
the disk in the uy-plane. Find the area this way.

13. Use the transformation in Exercise 2 to evaluate the integral

by first writing it as an integral over a region G in the uy-plane.

14. Use the transformation to evaluate the
integral

by first writing it as an integral over a region G in the uy-plane.

15. Use the transformation to evaluate the integral
sum

L
2

1
 L

y

1>y (x2 + y2) dx dy + L
4

2
 L

4>y
y>4  (x2 + y2) dx dy.

x = u>y, y = uy

L
2

0
 L

sy + 4d>2
y>2  y3s2x - yde s2x - yd2

 dx dy

x = u + s1>2dy, y = y

L
2>3

0
 L

2 - 2y

y
sx + 2yde sy - xd dx dy

G: u2 + y2 … 1
x = au, y = by

ƒsx, yd = 1
x2>a2 + y2>b2 = 1

pab

x = ar cos u, y = br sin u.

x2>a2 + y2>b2 = 1,   a 7 0,   b 7 0,

L
2

1
 L

2

1
 
y
x dy dx

G: 1 … u … 2, 1 … uy … 2
x = u, y = uy

6
R

 aAy
x + 2xyb  dx dy

y 7 0u 7 0x = u>y, y = uy
y = x, y = 4x.xy = 1, xy = 9

6
R

2sx - yd dx dy.

- s1>4dx + 1.
y =y = - s3>2dx + 1,  y = - s3>2dx + 3,  y = - s1>4dx ,

6
R

s3x2 + 14xy + 8y2d dx dy

16. Use the transformation to evaluate the in-
tegral

(Hint: Show that the image of the triangular region G with ver-
tices (0, 0), (1, 0), (1, 1) in the -plane is the region of integra-
tion R in the xy-plane defined by the limits of integration.)

Finding Jacobians
17. Find the Jacobian of the transformation

a.

b.

18. Find the Jacobian of the transformation

a.

b.

19. Evaluate the appropriate determinant to show that the Jacobian of
the transformation from Cartesian to Cartesian xyz-space
is 

20. Substitutions in single integrals How can substitutions in sin-
gle definite integrals be viewed as transformations of regions?
What is the Jacobian in such a case? Illustrate with an example.

Substitutions in Triple Integrals
21. Evaluate the integral in Example 5 by integrating with respect to

x, y, and z.

22. Volume of an ellipsoid Find the volume of the ellipsoid

(Hint: Let and Then find the volume of
an appropriate region in uyw-space.)

23. Evaluate

over the solid ellipsoid

(Hint: Let and Then integrate over an
appropriate region in uyw-space.)

24. Let D be the region in xyz-space defined by the inequalities

Evaluate

by applying the transformation

and integrating over an appropriate region G in uyw-space.

u = x, y = xy, w = 3z

9
D

sx2y + 3xyzd dx dy dz

1 … x … 2, 0 … xy … 2, 0 … z … 1.

z = cw .x = au, y = by,

x2

a2 +
y2

b2 + z2

c2 … 1 .

9 ƒ xyz ƒ dx dy dz

z = cw.x = au, y = by,

x2

a2 +
y2

b2 + z2

c2 = 1.

r2 sin f .
rfu-space

x = 2u - 1, y = 3y - 4, z = s1>2dsw - 4d.
x = u cos y, y = u sin y, z = w

0sx, y, zd>0su, y, wd
x = u sin y, y = u cos y.

x = u cos y, y = u sin y

0sx, yd>0su, yd

uy

L
1

0
 L

211 - x

0
 2x2 + y2 dy dx.

x = u2 - y2, y = 2uy
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25. Centroid of a solid semiellipsoid Assuming the result that the
centroid of a solid hemisphere lies on the axis of symmetry three-
eighths of the way from the base toward the top, show, by trans-
forming the appropriate integrals, that the center of mass of a
solid semiellipsoid 
lies on the z-axis three-eighths of the way from the base toward
the top. (You can do this without evaluating any of the integrals.)

z Ú 0,sx2>a2d + sy2>b2d + sz2>c2d … 1,

914 Chapter 15: Multiple Integrals

26. Cylindrical shells In Section 6.2, we learned how to find the
volume of a solid of revolution using the shell method; namely, if
the region between the curve and the x-axis from a to b

is revolved about the y-axis, the volume of the
resulting solid is Prove that finding volumes by
using triple integrals gives the same result. (Hint: Use cylindrical
coordinates with the roles of y and z changed.)

1b
a  2pxƒsxd dx .

s0 6 a 6 bd
y = ƒsxd

Chapter 15 Questions to Guide Your Review

1. Define the double integral of a function of two variables over a
bounded region in the coordinate plane.

2. How are double integrals evaluated as iterated integrals? Does the
order of integration matter? How are the limits of integration de-
termined? Give examples.

3. How are double integrals used to calculate areas and average val-
ues. Give examples.

4. How can you change a double integral in rectangular coordinates
into a double integral in polar coordinates? Why might it be
worthwhile to do so? Give an example.

5. Define the triple integral of a function ƒ(x, y, z) over a bounded
region in space.

6. How are triple integrals in rectangular coordinates evaluated?
How are the limits of integration determined? Give an example.

7. How are double and triple integrals in rectangular coordinates
used to calculate volumes, average values, masses, moments, and
centers of mass? Give examples.

8. How are triple integrals defined in cylindrical and spherical coor-
dinates? Why might one prefer working in one of these coordinate
systems to working in rectangular coordinates?

9. How are triple integrals in cylindrical and spherical coordinates
evaluated? How are the limits of integration found? Give examples.

10. How are substitutions in double integrals pictured as transforma-
tions of two-dimensional regions? Give a sample calculation.

11. How are substitutions in triple integrals pictured as transforma-
tions of three-dimensional regions? Give a sample calculation.

Chapter 15 Practice Exercises

Evaluating Double Iterated Integrals
In Exercises 1–4, sketch the region of integration and evaluate the
double integral.

1. 2.

3. 4.

In Exercises 5–8, sketch the region of integration and write an equiva-
lent integral with the order of integration reversed. Then evaluate both
integrals.

5. 6.

7. 8.

Evaluate the integrals in Exercises 9–12.

9. 10.

11. 12. L
1

0
 L

123 y
 
2p sin px2

x2  dx dyL
8

0
 L

223 x
 

dy dx

y4 + 1

L
2

0
 L

1

y>2 ex2
 dx dyL

1

0
 L

2

2y
4 cos sx2d dx dy

L
2

0
 L

4 - x2

0
2x dy dxL

3>2
0

 L
29 - 4y2

-29 - 4y2
 y dx dy

L
1

0
 L

x

x2
2x dy dxL

4

0
 L

sy - 4d>2
-24 - y

 dx dy

L
1

0
 L

2 -2y2y
 xy dx dyL

3>2
0

 L
29 - 4t2

-29 - 4t2
 t ds dt

L
1

0
 L

x3

0
 ey>x dy dxL

10

1
 L

1>y
0

 yexy dx dy

Areas and Volumes Using Double Integrals
13. Area between line and parabola Find the area of the region

enclosed by the line and the parabola in
the xy-plane.

14. Area bounded by lines and parabola Find the area of the “tri-
angular” region in the xy-plane that is bounded on the right by the
parabola on the left by the line and above by
the line 

15. Volume of the region under a paraboloid Find the volume
under the paraboloid above the triangle enclosed by
the lines and in the xy-plane.

16. Volume of the region under parabolic cylinder Find the vol-
ume under the parabolic cylinder above the region 
enclosed by the parabola and the line in the
xy-plane.

Average Values
Find the average value of over the regions in Exercises 17
and 18.

17. The square bounded by the lines in the first 
quadrant

18. The quarter circle in the first quadrantx2 + y2 … 1

y = 1x = 1,

ƒsx, yd = xy

y = xy = 6 - x2
z = x2

x + y = 2y = x, x = 0,
z = x2 + y2

y = 4.
x + y = 2,y = x2,

y = 4 - x2y = 2x + 4
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