Processing math: 100%


SOLUTION 4: We are given the function f(x)=x1+x and the interval [1,3]. This function is continuous on the closed interval [1,3] since it is the quotient of continuous functions y=x (polynomial) and y=1+x (polynomial). The derivative of f is f(x)=(1+x)(1)x(1)(1+x)2=1(1+x)2 We can now see that f is differentiable on the open interval (1,3). The assumptions of the Mean Value Theorem have now been met. Let's apply the Mean Value Theorem and find all possible values of c in the open interval (1,3). Then f(c)=f(3)f(1)31     1(1+c)2=(3)1+(3)(1)1+(1)31     1(1+c)2=341221     1(1+c)2=(3424)12     1(1+c)2=18     (1+c)2=8     1+c=±8=±2 2     c=±2 21     c=2 211.828   or   2 213.828   (3.828 is NOT in the interval (1,3).)     c=2 211.828    

Click HERE to return to the list of problems.