Processing math: 100%
SOLUTION 6: If y=x36+12x=(1/6)x3+(1/2)x−1 for 1≤x≤3, then
dydx=(1/6)(3)x2+(1/2)(−1)x−2
=(1/2)x2−12x2
=x22x2x2−12x2
=x4−12x2
so that
ARC=∫31√1+(dydx)2 dx
=∫31√1+(x4−12x2)2 dx
=∫31√4x44x4+x8−2x4+14x4 dx
=∫31√x8+2x4+14x4 dx
=∫31√x8+2x4+1√4x4 dx
=∫31√(x4+1)2√(2x2)2 dx
=∫31x4+12x2 dx
=∫31(x42x2+12x2) dx
=∫31((1/2)x2+(1/2)x−2) dx
=((1/2)x33+(1/2)x−1−1) |31
=(x36−12x) |31
=((3)36−12(3))−((1)36−12(1))
=276−16−16+12
=256+36
=286
=143
Click HERE to return to the list of problems.