SOLUTION 7: $ \ \ $ To integrate $ \displaystyle{ \int { \sqrt{x^2-9} \over x^2 } \ dx } $ use the trig substitution $$ x = 3 \sec \theta $$ so that $$ dx = 3 \sec \theta \tan \theta \ d \theta $$ Substitute into the original problem, replacing all forms of x, getting $$ \displaystyle { \int \frac{\sqrt{x^{2}-9}}{x^{2}} \ dx = \int \frac{\sqrt{9 \sec^{2} \theta - 9}}{9 \sec^{2} \theta} \cdot 3 \sec \theta \tan \theta \ d \theta } $$ $$ = \displaystyle { \int \frac{\sqrt{9 (\sec^{2} \theta - 1 )}}{9 \sec^{2} \theta} \cdot 3 \sec \theta \tan \theta \ d \theta } $$ $$ = \displaystyle { \int \frac{\sqrt{9 \tan^{2} \theta}}{9 \sec^{2} \theta} \cdot 3 \sec \theta \tan \theta \ d \theta } $$ $$ = \displaystyle { \int \frac{3 \tan \theta}{9 \sec^{2} \theta} \cdot 3 \sec \theta \tan \theta \ d \theta } $$ $$ = \displaystyle { \int \frac{\tan^{2} \theta}{\sec \theta} \ d \theta } $$ $$ = \displaystyle { \int \frac{\sec^{2} \theta - 1}{\sec \theta} \ d \theta} $$ $$ = \displaystyle { \int \Big( \frac{ \sec^2 \theta}{ \sec \theta } - \frac{1}{\sec \theta}) \ d \theta } $$ $$ = \displaystyle { \int (\sec \theta - \cos \theta) \ d \theta } $$ (Recall that $ \displaystyle { \int \sec \theta \ d \theta = \ln \Big|\sec \theta + \tan \theta \Big| + C } . $) $$ = \displaystyle { \ln \Big|\sec \theta + \tan \theta \Big| - \sin \theta + C } $$ $ \Big( $We need to write our final answer in terms of $x$.

tex2html_wrap_inline125


Since $ x = 3 \sec \theta $ it follows that $$ \sec \theta = \displaystyle{ x \over 3 } = \displaystyle{ hypotenuse \over adjacent } $$ and from the Pythagorean Theorem that $$ \displaystyle (adjacent)^2 + (opposite)^2 = (hypotenuse)^2 \ \ \longrightarrow $$ $$ (3)^2 + (opposite)^2 = (x)^2 \ \ \longrightarrow \ \ \ opposite = \sqrt{x^2-9} \ \ \longrightarrow $$ $$ \sin \theta = \displaystyle{ opposite \over hypotenuse }= \displaystyle{ \sqrt{x^2-9} \over x } $$ and $$ \tan \theta = \displaystyle{ opposite \over adjacent }= \displaystyle{ \sqrt{x^2-9} \over 3 } . \Big) $$ $$ = \displaystyle { \ln \Big|\frac{x}{3} + \frac{\sqrt{x^{2}-9}}{3} \Big| - \frac{\sqrt{x^{2}-9}}{x} + C } $$

Click HERE to return to the list of problems.