SOLUTION 9: $ \ \ $ To integrate $ \displaystyle{ \int { \sqrt{x^2+25} } \ dx } $ use the trig substitution $$ x = 5 \tan \theta $$ so that $$ dx = 5 \sec^{2} \theta \ d \theta $$ Substitute into the original problem, replacing all forms of $ x $, getting $$ \displaystyle {\int \sqrt{25 \tan^{2} \theta + 25} \cdot 5 \sec^{2} \theta \ d \theta } $$ $$ = \displaystyle { \int \sqrt{25 (\tan^{2} \theta + 1)} \ 5 \sec^{2} \theta \ d \theta } $$ $$ = \displaystyle { 25 \int \sqrt{\tan^{2} \theta + 1} \ \sec^{2} \theta \ d \theta } $$ $$ = \displaystyle { 25 \int \sqrt{\sec^{2} \theta} \ \sec^{2} \theta \ d \theta } $$ $$ = \displaystyle { 25 \int \sec \theta \ \sec^{2} \theta \ d \theta } $$ Now let's use integration by parts to integrate $ \ \displaystyle { \int \sec \theta \sec^{2} \theta \ d \theta } = A $ . Let $ u = \sec \theta $ and $ dv = \sec^2 \theta \ d \theta $ , so that $ du = \sec \theta \tan \theta \ d \theta $ and $ v = \tan \theta $. Then $$ A = \displaystyle { \int \sec \theta \sec^{2} \theta \ d \theta } $$ $$ = \sec \theta \tan \theta - \displaystyle { \int \sec \theta \tan^{2} \theta \ d \theta } $$ (Recall that $ \tan^2 \theta = \sec^2 \theta - 1$.) $$ = \sec \theta \tan \theta - \displaystyle { \int \sec \theta \ ( \sec^{2} \theta - 1) \ d \theta } $$ $$ = \sec \theta \tan \theta - \displaystyle { \int ( \sec \theta \ \sec^{2} \theta - \sec \theta ) \ d \theta } $$ $$ = \sec \theta \tan \theta - \displaystyle { \int \sec \theta \ \sec^{2} \theta \ d \theta } + \displaystyle { \int \sec \theta \ d \theta } $$ (Recall that $ \displaystyle { \int \sec \theta \ d \theta } = \ln\Big| \sec \theta + \tan \theta \Big| + C $.) $$ = \sec \theta \tan \theta - \displaystyle { \int \sec \theta \ \sec^{2} \theta \ d \theta } + \ln\Big| \sec \theta + \tan \theta \Big| + C $$ $$ = \sec \theta \tan \theta - A + \ln\Big| \sec \theta + \tan \theta \Big| + C $$ so that $$ A = \sec \theta \tan \theta - A + \ln\Big| \sec \theta + \tan \theta \Big| + C \ \ \ \ \longrightarrow $$ $$ 2A = \sec \theta \tan \theta + \ln\Big| \sec \theta + \tan \theta \Big| + C \ \ \ \ \longrightarrow $$ $$ A = \frac{1}{2} \sec \theta \tan \theta + \frac{1}{2} \ln\Big| \sec \theta + \tan \theta \Big| + C $$ i.e., $$ \displaystyle { \int \sec \theta \sec^{2} \theta \ d \theta } = \frac{1}{2} \sec \theta \tan \theta + \frac{1}{2} \ln\Big| \sec \theta + \tan \theta \Big| + C $$ Returning to our original problem we have that $$ \displaystyle{ \int {\sqrt{x^2+25} } \ dx } = 25 \displaystyle { \int \sec \theta \ \sec^{2} \theta \ d \theta } $$ $$ = 25 \Big( \frac{1}{2} \sec \theta \tan \theta + \frac{1}{2} \ln\Big| \sec \theta + \tan \theta \Big| + C \Big) $$ $$ = \frac{25}{2} \sec \theta \tan \theta + \frac{25}{2} \ln\Big| \sec \theta + \tan \theta \Big| + C $$ $ \Big($ Note that $ \ C = 25C \ $ in this context. Now we need to write our final answer in terms of $x$.

tex2html_wrap_inline125


Since $ x = 5 \tan \theta $ it follows that $$ \tan \theta = \displaystyle{ x \over 5 } = \displaystyle{ opposite \over adjacent } $$ and from the Pythagorean Theorem that $$ \displaystyle (adjacent)^2 + (opposite)^2 = (hypotenuse)^2 \ \ \longrightarrow $$ $$ (5)^2 + (x)^2 = (hypotenuse)^2 \ \ \longrightarrow \ \ \ hypotenuse = \sqrt{25+x^2} \ \ \longrightarrow $$ $$ \sec \theta = \displaystyle{ hypotenuse \over adjacent }= \displaystyle{ \sqrt{25+x^2} \over 5 } . \Big) $$ $$ = \frac{25}{2} \displaystyle{ \sqrt{25+x^2} \over 5 } \displaystyle{ x \over 5 } + \frac{25}{2} \ln\Big| \displaystyle{ \sqrt{25+x^2} \over 5 } + \displaystyle{ x \over 5 } \Big| + C $$ $$ = \frac{1}{2} \displaystyle{ x \sqrt{25+x^2}} + \frac{25}{2} \ln\Big| \displaystyle{ \sqrt{25+x^2} \over 5 } + \displaystyle{ x \over 5 } \Big| + C $$

Click HERE to return to the list of problems.