SOLUTION 13: $ \ \ $ Integrate $ \displaystyle{ \int { x \over \sqrt{x^2+4x+5} } \ dx } $. First complete the square. Then $$ \displaystyle { \int \frac{x}{\sqrt{x^{2}+4x+5}} \ dx = \int \frac{x}{\sqrt{(x^{2}+4x+4)+1}} \ dx} $$ $$ = \displaystyle { \int \frac{x}{\sqrt{(x+2)^{2}+1}} \ dx } $$ Use the trig substitution $$ x+2 = \tan \theta $$ so that $$ x = \tan \theta - 2 $$ and $$ dx = \sec^{2} \theta \ d \theta $$ Substitute into the original problem, replacing all forms of x, getting $$ \displaystyle { \int \frac{x}{\sqrt{(x+2)^{2}+1}} \ dx } = \displaystyle { \int \frac{\tan \theta - 2}{\sqrt{\tan^{2} \theta + 1}} \ \sec^{2} \theta \ d \theta } $$ $$ = \displaystyle { \int \frac{\tan \theta - 2}{\sqrt{\sec^{2} \theta}} \ \sec^{2} \theta \ d \theta } $$ $$ = \displaystyle { \int \frac{\tan \theta - 2}{\sec \theta} \ \sec^{2} \theta \ d \theta } $$ $$ = \displaystyle { \int (\tan \theta - 2) \sec \theta \ d \theta} $$ $$ = \displaystyle { \int (\sec \theta \tan \theta - 2 \sec \theta) \ d \theta } $$ $$ = \displaystyle { \sec \theta - 2 \ln \Big|\sec \theta + \tan \theta \Big| + C } $$ $ \Big($ We need to write our final answer in terms of $x$.

tex2html_wrap_inline125


Since $ x+2 = \tan \theta $ it follows that $$ \tan \theta = \displaystyle{ x+2 \over 1 } = \displaystyle{ opposite \over adjacent } $$ and from the Pythagorean Theorem that $$ \displaystyle (adjacent)^2 + (opposite)^2 = (hypotenuse)^2 \ \ \longrightarrow $$ $$ (1)^2 + (x+2)^2 = (hypotenuse)^2 \ \ \longrightarrow \ \ \ hypotenuse = \sqrt{x^2+4x+5} \ \ \longrightarrow $$ $$ \sec \theta = \displaystyle{ hypotenuse \over adjacent }= \displaystyle{ \sqrt{x^2+4x+5} \over 1 = \sqrt{x^2+4x+5} } . \Big) $$ $$ = \displaystyle { \sqrt{x^2+4x+5} - 2 \ln \Big| \sqrt{x^2+4x+5} + (x+2) \Big| + C } $$

Click HERE to return to the list of problems.