Next: About this document ...



SOLUTIONS TO U-SUBSTITUTION



SOLUTION 8 : Integrate $ \displaystyle{ \int { 3x+6 \over x^2+4x-3 } \,dx } $ . Let

u = x2+4x-3

so that

du = (2x+4) dx = 2 (x+2) dx ,

or

(1/2) du = (x+2) dx .

Substitute into the original problem, replacing all forms of x, getting

$ \displaystyle{ \int { 3x+6 \over x^2+4x-3 } \,dx } = \displaystyle{ \int { 3(x+2) \over x^2+4x-3 } \, dx } $

$ = 3 \displaystyle{ \int { 1 \over x^2+4x-3 } \,(x+2) dx } $

$ = 3 \displaystyle{ \int { 1 \over u } \, (1/2) du } $

$ = (3/2) \displaystyle{ \int { 1 \over u } \, du } $

$ = (3/2) \displaystyle{ { \ln \vert u\vert } + C } $

$ = (3/2) \displaystyle{ { \ln \vert x^2+4x-3\vert } + C } $ .

Click HERE to return to the list of problems.




SOLUTION 9 : Integrate $ \displaystyle{ \int { x \ 3^{ x^2+1} } \,dx } $ . Let

u = x2+1

so that

du = 2x dx ,

or

(1/2) du = x dx .

Substitute into the original problem, replacing all forms of x, getting

$ \displaystyle{ \int { x \ 3^{ x^2+1} } \,dx } = \displaystyle{ \int { 3^{ x^2+1} } \, x dx } $

$ = \displaystyle{ \int { 3^u } \,(1/2) du } $

$ = (1/2) \displaystyle{ \int { 3^u } \, du } $

$ = (1/2) \displaystyle{ { 3^u \over \ln 3 } + C } $

$ = \displaystyle{ 1 \over 2 \ln 3 } \displaystyle{ { 3^u } + C } $

(Recall that $ A \ln B = \ln B^A $ .)

$ = \displaystyle{ 1 \over \ln 3^2 } \displaystyle{ { 3^{ x^2+1 } } + C } $

$ = \displaystyle{ 1 \over \ln 9 } \displaystyle{ { 3^{ x^2+1 } } + C } $ .

Click HERE to return to the list of problems.




SOLUTION 10 : Integrate $ \displaystyle{ \int { 3 \over x \ln x } \,dx } $. Let

$ u = \ln x $

so that

$ du = \displaystyle{ 1 \over x } dx $ .

Substitute into the original problem, replacing all forms of x, getting

$ \displaystyle{ \int { 3 \over x \ln x } \,dx }
= 3 \displaystyle{ \int { 1 \over \ln x } \, { 1 \over x } dx } $

$ = 3 \displaystyle{ \int { 1 \over u } \, du } $

$ = 3 \displaystyle{ \ln \vert u \vert + C } $

$ = 3 \displaystyle{ \ln \vert \ln x \vert + C } $ .

Click HERE to return to the list of problems.




SOLUTION 11 : Integrate $ \displaystyle{ \int { \cos(5x) \over e^{ \sin(5x) } } \,dx } $. Let

$ u = \sin(5x) $

so that (Don't forget to use the chain rule.)

$ du = 5 \cos(5x) dx $ ,

or

$ (1/5) du = \cos(5x) dx $ .

Substitute into the original problem, replacing all forms of x, getting

$ \displaystyle{ \int { \cos(5x) \over e^{ \sin(5x) } } \,dx }
= \displaystyle{ \int { 1 \over e^{ \sin(5x) } } \, \cos(5x) dx } $

$ = \displaystyle{ \int { 1 \over e^ u } \, (1/5) du } $

(Do not make the following VERY COMMON MISTAKE : $ \displaystyle{ \int { 1 \over e^u } \, du }
= \displaystyle{ \ln \vert e^u\vert } + C $ . Why is this INCORRECT ?)

$ = (1/5) \displaystyle{ \int { e^{-u} } \, du } $ .

Now make another substitution. Let

w = -u

so that

dw = (-1) du ,

or

(-1) dw = du .

Substitute into the problem, replacing all forms of u, getting

$ (1/5) \displaystyle{ \int { e^{-u} } \, du } = (1/5) \displaystyle{ \int { e^{w} } \, (-1) dw } $

$ = (1/5)(-1) \displaystyle{ \int { e^{w} } \, dw } $

$ = (-1/5) \displaystyle{ e^{w} + C } $

$ = (-1/5) \displaystyle{ e^{-u} + C } $

$ = (-1/5) \displaystyle{ e^{- \sin(5x) } + C } $ .

Click HERE to return to the list of problems.




SOLUTION 12 : Integrate $ \displaystyle{ \int_{0}^{ \sqrt{\pi} } { x \sin(x^2) } \,dx } $. Let

u = x2

so that

du = 2x dx ,

or

(1/2) du = x dx .

In addition, the range of x-values is

$ x : 0 \longrightarrow \sqrt{ \pi } $ ,

so that the range of u-values is

$ u : (0)^2 \longrightarrow \big( \sqrt{ \pi } \big)^2 $ ,

or

$ u : 0 \longrightarrow \pi $ .

Substitute into the original problem, replacing all forms of x and the x-values, getting

$ \displaystyle{ \int_{0}^{ \sqrt{\pi} } { x \sin(x^2) } \,dx }
= \displaystyle{ \int_{0}^{ \sqrt{\pi} } { \sin(x^2) } \, x dx } $

$ = \displaystyle{ \int_{0}^{ \pi } { \sin(u) } \, (1/2) du } $

$ = (1/2) \displaystyle{ \int_{0}^{ \pi } { \sin u } \, du } $

$ = (1/2) \displaystyle{ \Big( -\cos u \big\vert_{0}^{\pi} \Big) } $

$ = (-1/2) \displaystyle{ \Big( \cos u \big\vert_{0}^{\pi} \Big) } $

$ = (-1/2)( \cos \pi - \cos 0 ) $

= (-1/2)( (-1) - (1) )

= (-1/2)( -2)

= 1 .

Click HERE to return to the list of problems.




SOLUTION 13 : Integrate $ \displaystyle{ \int { (x+3) (x-1)^5 } \,dx } $ . Let

u = x-1

so that

du = (1) dx = dx .

In addition, we can "back substitute" with

x = u+1 .

Substitute into the original problem, replacing all forms of x, getting

$ \displaystyle{ \int { (x+3) (x-1)^5 } \,dx }
= \displaystyle{ \int { ((u+1)+3) u^5 } \,du } $

$ = \displaystyle{ \int { (u+4) u^5 } \,du } $

$ = \displaystyle{ \int { (u^6 + 4 u^5) } \,du } $

$ = \displaystyle{ { u^7 \over 7 } + 4 { u^6 \over 6 } + C } $

$ = \displaystyle{ (1/7) u^7 + (2/3) u^6 + C } $

$ = \displaystyle{ (1/7) (x-1)^7 + (2/3) (x-1)^6 + C } $ .

Click HERE to return to the list of problems.






Duane Kouba
1999-05-07