Convex Polyhedra

[10] D. The Luc and R. Wets. Outer-semicontinuity of positive hull mappings with

       applications to semi-infinite and stochastic programming. SIAM Journal on

       Optimization, 19(700-713), 2008.

[9] S.W. Wallace and R. Wets. The facets of the polyhedral set determined by the

     Gale-Hoffman inequalities. Mathematical Programming, 62:215–222, 1993.

[8] R. Wets. Elementary constructive proofs of the theorems of Farkas, Minkowski

     and Weyl. In J.J. Gabszewicz, J.-F. Richard, and L.A. Wolsey, editors, Economic

    Decision Making: games, econometrics and optimization. Contributions in honour

    of Jacques Drèze, pages 427–432. North-Holland, Elsevier-Science, 1990.

[7] J.R. Birge and R. Wets. On-line solution of linear programs using sublinear

     functions. University of Michigan, 1986. Technical Report #86-25.

[6] R. Wets. On the continuity of the value of a linear program and of related

     polyheral-valued multifunctions. Mathematical Programming Study, 24:14–29,


[5] R. Wets. Über ein Satz von Klee und Strazewicz. Operation Research Verfahren,

     19:185–189, 1975.

[4] D. Walkup and R. Wets. Lifting projections of convex polyhedra.

     Pacific Journal of Mathematics,  28:465–475, 1969.

[3] D. Walkup and R. Wets. A Lipschitzian characterization of convex polyhedra.

     Proceedings American Mathematical Society, 23:167–173, 1969.

[2] R. Wets and C. Witzgall. Towards an algebraic characterization of convex

     polyhedral cones. Numerische Mathematik, 12:134–138, 1968.

[1] R. Wets and C. Witzgall. Algorithms for frames and lineality spaces of cones.

     J. of Research of the National Bureau of Standards, 71B:1–7, 1967.