# Mathematics Colloquia and Seminars

Return to Colloquia & Seminar listing

### Comparing the quenched and averaged large deviation rate functions

**Mathematical Physics & Probability**

Speaker: | Atilla Yilmaz, UC Berkeley |

Location: | 1147 MSB |

Start time: | Wed, Oct 21 2009, 4:10PM |

Consider large deviations for nearest-neighbor random walk in a uniformly elliptic i.i.d. environment. Denote the quenched and averaged rate functions by $I_q$ and $I_a$, respectively. Note that $I_a$ is less than or equal to $I_q$ by Jensen's inequality. Also, it is easy to see that $I_q$ and $I_a$ are not identically equal. In this talk, I will present two results: (1) For ballistic walks in dimensions four or more, $I_q$ and $I_a$ are equal on a closed set whose interior contains every nonzero velocity at which the rate functions vanish. (2) The first result is not valid in general for ballistic walks in lower dimensions. (Joint work with O. Zeitouni.)