Mathematics Colloquia and Seminars

Return to Colloquia & Seminar listing

Is Quantum Gravity a Chern-Simons Theory?

Mathematical Physics Seminar

Speaker: Andrew Waldron, Math Dept UC Davis
Location: 3240 MSB
Start time: Thu, Oct 9 2014, 4:10PM

We propose a model of quantum gravity in arbitrary dimensions defined in terms of the BV quantization of a supersymmetric, infinite dimensional matrix model. This gives an (AKSZ-type) Chern-Simons theory with gauge algebra the space of observables of a quantum mechanical Hilbert space H. The model is motivated by previous attempts to formulate gravity in terms of non-commutative, phase space, field theories as well as the Fefferman-Graham curved analog of Dirac spaces for conformally invariant wave equations. The field equations are flat connection conditions amounting to zero curvature and parallel conditions on operators acting on H. This matrix-type model may give a better defined setting for a quantum gravity path integral. We demonstrate that its underlying physics is a summation over Hamiltonians labeled by a conformal class of metrics and thus a sum over causal structures. This gives in turn a model summing over fluctuating metrics plus a tower of additional modes-we speculate that these could yield improved UV behavior.