UC Davis Mathematics

Mathematics Colloquia and Seminars

Return to Colloquia & Seminar listing

Lagrangian Delzant Theorem and its applications

Geometry/Topology

Speaker: Vardan Oganesyan, Stony Brook
Location: (Online) Zoom ID: TBA
Start time: Tue, Mar 31 2020, 11:30AM

We associate a closed Lagrangian submanifold L of C^n to each Delzant polytope. We prove that L is monotone if and only if the polytope P is Fano. The Lagrangian L is diffeomorphic to the total space of fiber bundle over T^k, where the fiber is the so-called real moment-angle manifold associated to P. In some cases real moment angle manifolds are diffeomorphic to connected sums of sphere products. Similar theorems can be proved for Lagrangians of CP^n and (CP^n)^k. Using this method we can construct a huge number of monotone Lagrangian submanifolds. Many of constructed monotone Lagrangians are smoothly isotopic, but they are not Hamiltonian isotopic. Also, we will discuss restrictions on Maslov class of monotone Lagrangian submanifolds of C^n. We will show that in certain cases our examples realize all possible minimal Maslov numbers. If time permits, we will discuss applications to monotone Lagrangian cobordisms.



Please note a time change!