Return to Colloquia & Seminar listing
Act globally, compute locally: Group actions, fixed points, and localization
Algebra & Discrete MathematicsSpeaker: | Tara Holm, Cornell University |
Location: | 1147 MSB |
Start time: | Fri, Apr 2 2010, 11:00AM |
Localization is a topological technique that allows us to make global equivariant computations in terms of local data at the fixed points. For example, we may compute a global integral by summing integrals at each of the fixed points. This often turns topological questions into combinatorial ones and vice versa. This lecture will feature several instances of localization that occur at the crossroads of symplectic and algebraic geometry on the one hand, and combinatorics and representation theory on the other. The examples come largely from the symplectic category. No background in symplectic geometry will be assumed.