Mathematics Colloquia and Seminars

Return to Colloquia & Seminar listing

Deep neural networks: structure and function

Special Events

Speaker: David Rolnick, University of Pennsylvania
Location: 1147 MSB
Start time: Mon, Feb 10 2020, 4:10PM

Deep neural networks have revolutionized artificial intelligence in recent years but remain poorly understood. Even as algorithms based on neural networks are used to drive cars and diagnose diseases, their design continues to rely more on trial and error than mathematics. In this talk, we provide rigorous grounding for the relationship between structure and function in neural networks. A neural network represents a complicated function as the composition of many simple parts, with the structure of the network influencing what functions can be expressed and learned from data. We show that deep networks can express many functions with exponentially fewer parameters than shallow networks. We prove there exists a massive gap between the maximum complexity of the functions that a network can express and the expected complexity of the functions that it learns in practice. Building on this work, we find that the generalized hyperplane arrangements defined by neural networks allow us to reverse-engineer a network from the function it computes.

Meet the speaker at a reception starting 3:45pm in front of 1147 MSB. Refreshments will be served.